地下水封洞库洞室轴线方向优化方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Method of Optimizing Axis Direction of Underground Water-sealed Storage Cavern
  • 作者:曹洋兵 ; 陈玉华 ; 黄真萍 ; 刘成禹 ; 邱冬冬
  • 英文作者:CAO Yang-bing;CHEN Yu-hua;HUANG Zhen-ping;LIU Cheng-yu;QIU Dong-dong;College of Environmental and Resources, Fuzhou University;Key Laboratory of Ministry of Land and Resources on Geohazard Prevention of Hilly Mountains (Fujian Provincial Key Laboratory of Geohazard Prevention);Engineering Research Centre of Geological Engineering of Fujian Provincial Universities, Fuzhou University;
  • 关键词:地下水封洞库 ; 洞室轴线方向 ; 优化方法 ; 离散元模拟 ; 关键块体理论
  • 英文关键词:underground water-sealed storage cavern;;axis direction of cavern;;optimization method;;discrete element simulation;;key block theory
  • 中文刊名:CJKB
  • 英文刊名:Journal of Yangtze River Scientific Research Institute
  • 机构:福州大学环境与资源学院;国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室);福州大学地质工程福建省高校工程研究中心;
  • 出版日期:2019-05-10 13:59
  • 出版单位:长江科学院院报
  • 年:2019
  • 期:v.36;No.247
  • 基金:国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金资助项目(FJKLGH2017K004,FJKLGH2017K002);; 岩土钻掘与防护教育部工程研究中心开放基金项目(201702);; 福建省教育厅中青年教师教育科研项目(JAT170056)
  • 语种:中文;
  • 页:CJKB201905030
  • 页数:8
  • CN:05
  • ISSN:42-1171/TV
  • 分类号:159-166
摘要
地下水封洞库洞室轴线方向对围岩稳定性、支护费用及施工安全等具有重要影响。基于洞库工程特性,提出了洞室轴向综合优化方法和评价指标。首先,依据国内规范确定出洞室轴向可选范围;然后,基于等效连续介质模型和非连续介质模型,以围岩最大位移、塑性区体积、稳定系数及结构面最大剪位移为评价指标,确定出各模型条件下的最优洞室轴向;基于关键块体理论,以支护压力为评价指标,确定出该条件下的最优轴向;最后,全面分析各评价指标计算结果,综合确定出最优洞室轴向。结果表明:构建的数值模型应包含掌子面,以全面反映施工过程安全性;基于强度折减法确定围岩稳定系数时,使用位移-折减系数曲线的位移突变点作为临界折减系数评判方法较计算不收敛评判法更为合理。将提出的洞室轴向综合优化方法应用于山东某地下水封洞库工程,优化结果证实了该方法的可行性和可靠性,可为相关工程提供参考。
        The axis direction of underground water-sealed cavern plays a pivotal role in surrounding rock stability, support costs, and construction safety. We present a comprehensive optimization method together with evaluation indexes for the axis direction of cavern in line with engineering characteristics of underground water-sealed cavern. Firstly, we determined the optional range of axis direction according to specifications in China. Subsequently, we determined the optimal axis direction in equivalent continuum model and in discontinuous medium model, respectively, with evaluation indicators including the maximum displacement of surrounding rock, the volume of plastic zone, the stability coefficient, and the maximum shear displacement on joint surface. Afterwards, we determined the optimal axis direction of cavern with support pressure as evaluation index based on key block theory. Finally, we obtained the optimal axis direction comprehensively through holistic analysis of the calculation result of each index. Research findings suggest that the numerical model should include the excavation face to reflect the safety of construction process. In the determination of stability coefficient of surrounding rock based on strength reduction method, we should select the abrupt change point on the displacement-reduction factor curve as the critical stability coefficient rather than by calculating misconvergence. The present method has been proved to be feasible and reliable in application to an underground water-sealed cavern project in Shandong Province.
引文
[1] 宋琨,晏鄂川,杨举,等.基于正交设计的地下水封洞库群优化[J].岩土力学,2011,32(11):3503-3507.
    [2] 戚蓝,马启超.在地应力场分析的基础上探讨地下洞室长轴向选取和围岩稳定性[J].岩石力学与工程学报,2000,19(增1):1120-1123.
    [3] 周建民,金丰年,王斌,等.不同破裂面条件下洞室轴线走向的计算方法[J].地下空间与工程学报,2005,1(3):367-369.
    [4] 倪绍虎,肖明,邹红英.岩层走向对地下洞室围岩稳定的影响[J].武汉大学学报(工学版),2008,41(3):47-51.
    [5] 王俊奇,颜月霞.地应力对洞室轴线布置影响的二维数值分析[J].长江科学院院报,2009,26(7):33-39.
    [6] 张玉升.黄岛地下水封洞库洞室群合理主轴线方位探讨[J].勘察科学技术,2011,(4):43-45.
    [7] 李莉,何江达,余挺,等.关于地下厂房纵轴线方位的优化设计[J].四川大学学报(工程科学版),2003,35(3):34-37.
    [8] ZHANG Y,XIAO M,TANG F.Numerical Analysis on Proper Arrangement of Axis Azimuth of Deep Underground Cavern Groups[J].Engineering Journal of Wuhan University,2009,42(3):331-335.
    [9] 王震洲,侯东奇,曾海燕,等.两河口地下厂房轴线方位选择与围岩稳定分析[J].地下空间与工程学报,2016,12(1):227-235.
    [10] 张子新,孙钧.块体理论赤平解析法及其在硐室稳定分析中的应用[J].岩石力学与工程学报,2002,21(12):1756-1760.
    [11] 邵冠慧,李晓昭,赵晓豹,等.基于块体理论安全系数的隧道优化设计[J].工程地质学报,2010,18(4):581-585.
    [12] 杨文军,洪宝宁,孙少锐,等.基于块体理论进行隧道轴线走向优化的研究[J].公路交通科技,2010,27(7):88-93.
    [13] 刘彬,高正夏.惠州抽水蓄能电站输水隧洞洞轴线走向优化研究[J].勘察科学技术,2012,(3):6-8.
    [14] 梁正召,龚斌,吴宪锴,等.主应力对洞室围岩失稳破坏行为的影响研究[J].岩石力学与工程学报,2015,34(增1):3176-3187.
    [15] LI H B,YANG X G,ZHANG X B,et al.Deformation and Failure Analyses of Large Underground Caverns during Construction of the Houziyan Hydropower Station,Southwest China[J].Engineering Failure Analysis,2017,80:164-185.
    [16] SU K,ZHOU Y,WU H,et al.An Analytical Method for Groundwater Inflow into a Drained Circular Tunnel[J].Ground Water,2017,55(10):712-721.
    [17] SY/T 0610—2008,地下水封洞库岩土工程勘察规范[S].北京:中国标准出版社,2008.
    [18] GB 50455—2008,地下水封石洞油库设计规范[S].北京:中国计划出版社,2008.
    [19] GB/T 50218—2014,工程岩体分级标准[S].北京:中国计划出版社,2014.
    [20] 郑颖人,肖强,叶海林,等.地震隧洞稳定性分析探讨[J].岩石力学与工程学报,2010,29(6):1081-1088.
    [21] GB 50086—2015,岩土锚杆与喷射混凝土支护工程技术规范[S].北京:中国计划出版社,2015.
    [22] 雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698.
    [23] BARTON N,LIEN R,LUNDE J.Engineering Classification of Rock Masses for the Design of Tunnel Support[J].Rock Mechanics,1974,6(4):189-236.
    [24] HOEK E.Support of Underground Excavations in Hard Rock[M].London:Taylor & Francis,1995.
    [25] HOEK E,CARRANZA-TORRES C.Hoek-Brown Failure Criterion 2002 Edition[C]//Proceedings of the Fifth North American Rock Mechanics Symposium.Toronto,July 7-10,2002:18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700