中国造山带动力学研究中的数值模拟应用与发展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:APPLICATION AND TREND OF NUMERICAL SIMULATION IN DYNAMIC STUDY OF OROGENIC BELT IN CHINA
  • 作者:陈振坤 ; 苏金宝 ; 陆艺
  • 英文作者:CHEN Zhenkun;SU Jinbao;LU Yi;School of Earth Sciences and Engineering,Hohai Uinversity;
  • 关键词:中国 ; 造山带 ; 动力学 ; 数值模拟 ; 多场耦合 ; 高精度模拟
  • 英文关键词:China;;orogenic belt;;dynamics;;numerical simulation;;multi-field coupling;;high-precision simulation
  • 中文刊名:DZLX
  • 英文刊名:Journal of Geomechanics
  • 机构:河海大学地球科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:地质力学学报
  • 年:2019
  • 期:v.25
  • 基金:中央高校基本科研业务费(2018B18014);; 国家自然科学基金(41872074)
  • 语种:中文;
  • 页:DZLX201902001
  • 页数:15
  • CN:02
  • ISSN:11-3672/P
  • 分类号:5-19
摘要
数值模拟为造山带动力学研究提供了有效的量化工具,但即使研究人员根据造山带不同的动力问题进行针对性模拟,也很难对各种模型的优劣进行判断。文章在研究和分析国内外学者运用数值模拟研究中国造山带动力学成果的基础上,系统总结了造山带动力学数值模拟的方法及研究成果,并对未来的研究方向及趋势进行了展望。与国外造山带研究相比,中国复杂造山带的数值模拟研究仍存在不足,需要加强洋—陆俯冲模拟结果与实际地质情况的对比力度。运用多场耦合以及高精度模拟和高级求解方法相结合的数值模拟是造山带动力学模拟研究的趋势。
        Numerical simulation provides an effective tool for the study of orogenic dynamics. Depending on the different dynamic problems in orogenic belts, the researchers have carried out various simulations, which is difficult to judge their advantages and disadvantages. With that in mind, based on the review and analysis of the orogenic belt dynamics in China by numerical simulation, the numerical simulation methods and results of orogenic belt dynamics are summarized, and the prospects and the future research direction are presented. At present, numerical simulation technology has made remarkable progress in the study of orogenic dynamic simulation in China, but there are still some shortcomings compared with foreign orogenic belt research, such as the simulation study of the Pacific plate subduction to Eastern China. This requires enhancing the contrast between the Ocean-Continent subduction simulation results and the actual geology. Meanwhile, the application of Multi-field coupled 3 D models and the combination of high-precision simulation and advanced solution methods is the trend of orogenic dynamics simulation research.
引文
[1] 黄汲清, 任纪舜, 姜春发, 等. 中国大地构造基本轮廓[J]. 地质学报, 1977, 51(2): 117~135. HUANG Jiqing, REN Jishun, JIANG Chunfa, et al. An outline of the tectonic characteristics of China[J]. Acta Geologica Sinica, 1977, 51(2): 117~135. (in Chinese with English abstract)
    [2] 钟宏, 柏中杰, 朱维光. 太平洋与特提斯构造域转换期岩浆作用与成矿[J]. 矿物岩石地球化学通报, 2017, 36(4): 557~559. ZHONG Hong, BAI Zhongjie, ZHU Weiguang. Magmatism and mineralization associated with the transition between Paleo-Pacific and Tethyan tectonic domains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 557~559. (in Chinese with English abstract)
    [3] 吴正文, 张长厚. 关于创建中国造山带理论的思考[J]. 地学前缘, 1999, 6(3): 21~29. WU Zhengwen, ZHANG Changhou. Some ideas regarding to the establishment of orogeny theory with Chinese characters[J]. Earth Science Frontiers, 1999, 6(3): 21~29. (in Chinese with English abstract)
    [4] Dewey J F, Bird J M. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 1970, 75(14): 2625~2647.
    [5] Molnar P, Lyon-Caen H. Some simple physical aspects of the support, structure, and evolution of mountain belts[A]. Clark Jr S P, Burchfiel B C, Suppe J. Processes in Continental Lithospheric Deformation[M]. McLean, VA: Geological Society of America, 1988, 588~592.
    [6] Pusok A E, Kaus B J P. Development of topography in 3-D continental-collision models[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1378~1400.
    [7] 林舸, 赵重斌, 张晏华, 等. 地质构造变形数值模拟研究的原理、方法及相关进展[J]. 地球科学进展, 2005, 20(5): 549~555. LIN Ge, ZHAO Chongbin, ZHANG Yanhua, et al. The principle, method and related research progress on the numerical modeling of geological structural deformation[J]. Advances in Earth Science, 2005, 20(5): 549~555. (in Chinese with English abstract)
    [8] Zhao C B, Hobbs B E, Ord A. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences: An example of equal-distant mineralization in a fault[J]. Science in China Series D: Earth Sciences, 2008, 51(7): 947~954.
    [9] 郑洪伟, 李廷栋, 高锐, 等. 数值模拟在地球动力学中的研究进展[J]. 地球物理学进展, 2006, 21(2): 360~369. ZHENG Hongwei, LI Tingdong, GAO Rui, et al. The advance of numerical simulation in geodynamics[J]. Progress in Geophysics, 2006, 21(2): 360~369. (in Chinese with English abstract)
    [10] 谭晓慧, 宋传中, 查甫生, 等. 数值模拟方法在构造变形研究中的应用[J]. 合肥工业大学学报(自然科学版), 2010, 33(12): 1851~1857. TAN Xaohui, SONG Chuanzhong, ZHA Fusheng, et al. Application of numerical simulation in tectonic deformation research[J]. Journal of Hefei University of Technology, 2010, 33(12): 1851~1857. (in Chinese with English abstract)
    [11] 王瑞瑞, 许志琴, 梁凤华. 大巴山弧形构造的成因——来自数值模拟的证据[J]. 地质学报, 2013, 87(10): 1489~1497. WANG Ruirui, XU Zhiqin, LIANG Fenghua. Origin of the Dabashan salient: Evidence from numerical modelling[J]. Acta Geologica Sinica, 2013, 87(10): 1489~1497. (in Chinese with English abstract)
    [12] Liu J, Liu Q Y, Guo B, et al. Small-scale convection in the upper mantle beneath the Chinese Tian Shan Mountains[J]. Physics of the Earth and Planetary Interiors, 2007, 163(1/4): 179~190.
    [13] 詹华明, 罗照华, 林舸. 东昆仑造山带拆沉作用的数值模拟[J]. 地质找矿论丛, 2016, 31(1): 77~86. ZHAN Huaming, LUO Zhaohua, LIN Ge. Numerical simulation of delamination in the East Kunlun orogenic belt[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(1): 77~86. (in Chinese with English abstract)
    [14] 王飞, 王椿镛, 张东宁. 大别造山带构造演化的数值模拟[J]. 地震学报, 1999, 21(5): 478~486. WANG Fei, WANG Chunyong, ZHANG Dongning. Numerical simulation of the Dabie orogenic belt’s tectonic evolution[J]. Acta Seismologica Sinica, 1999, 21(5): 478~486. (in Chinese)
    [15] 杨辉, 滕吉文, 王谦身, 等. 龙门山造山带及邻区重力场特征与动力学响应数值模拟[J]. 地球物理学报, 2013, 56(1): 106~116. YANG Hui, TENG Jiwen, WANG Qianshen, et al. Numerical simulation on the special gravity fields and dynamic response in Longmenshan orogenic belt and adjacent area[J]. Chinese Journal of Geophysics, 2013, 56(1): 106~116. (in Chinese with English abstract)
    [16] 柳畅, 朱伯靖, 石耀霖. 粘弹性数值模拟龙门山断裂带应力积累及大震复发周期[J]. 地质学报, 2012, 86(1): 157~169. LIU Chang, ZHU Bojing, SHI Yaolin. Stress accumulation of the Longmenshan fault and recurrence interval of Wenchuan Earthquake based on viscoelasticity simulation[J]. Acta Geologica Sinica, 2012, 86(1): 157~169. (in Chinese with English abstract)
    [17] Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J]. Tectonics, 1997, 16(4): 571~584.
    [18] 范桃园, 石耀霖. 大别—苏鲁超高压变质带P-T-t轨迹的动力学模拟[J]. 地球物理学报, 2001, 44(5): 627~635. FAN Taoyuan, SHI Yaolin. Thermo-dynamic modeling of P-T-t paths of Dabie-Sulu ultra-high pressure metamorpism[J]. Chinese Journal of Geophysics, 2001, 44(5): 627~635. (in Chinese with English abstract)
    [19] 闫澍旺, 霍知亮. 岩土工程下沉贯入数值模拟方法研究进展[J]. 力学与实践, 2016, 38(3): 237~249, 236. YAN Shuwang, HUO Zhiliang. Advance in numerical simulation methods for penetration in geotechnical engineering[J]. Mechanics in Engineering, 2016, 38(3): 237~249, 236. (in Chinese with English abstract)
    [20] 张雄, 陆明万, 王建军. 任意拉格朗日-欧拉描述法研究进展[J]. 计算力学学报, 1997, 14(1): 91~102. ZHANG Xiong, LU Mingwan, WANG Jianjun. Research progress in arbitrary Lagrangian Eulerian method[J]. Chinese Journal of Computational Mechanics, 1997, 14(1): 91~102. (in Chinese)
    [21] 王建华, 兰斐. 钻井船插桩对邻近桩影响的耦合欧拉-拉格朗日有限元方法研究[J]. 岩土力学, 2016, 37(4): 1127~1136. WANG Jianhua, LAN Fei. A coupled Eulerian-Lagrange FEM method for analyzing the effects of spudcan penetration on an adjacent pile[J]. Rock and Soil Mechanics, 2016, 37(4): 1127~1136. (in Chinese with English abstract)
    [22] Qiu G, Henke S, Grabe J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations[J]. Computers and Geotechnics, 2011, 38(1): 30~39.
    [23] Lei X Q, Chen Y P, Zhao J M, et al. Modelling of current crustal tectonic deformation in the Chinese Tianshan orogenic belt constrained by GPS observations[J]. Journal of Geophysics and Engineering, 2010, 7(4): 431~442.
    [24] Finzel E S, Flesch L M, Ridgway K D, et al. Surface motions and intraplate continental deformation in Alaska driven by mantle flow[J]. Geophysical Research Letters, 2015, 42(11): 4350~4358.
    [25] Kaus B J P, Steedman C, Becker T W. From passive continental margin to mountain belt: Insights from analytical and numerical models and application to Taiwan[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1/4): 235~251.
    [26] 傅容珊, 徐耀民, 黄建华, 等. 青藏高原挤压隆升过程的数值模拟[J]. 地球物理学报, 2000, 43(3): 346~355. FU Rongshan, XU Yaomin, Huang Jianhua, et al. Numerical simulation of the compression uplift of the Qinghai-Xizang Plateau[J]. Chinese Journal of Geophysics, 2000, 43(3): 346~355. (in Chinese with English abstract)
    [27] Lu G, Zhao L, Zheng TY, et al. Strong intracontinental lithospheric deformation in South China: Implications from seismic observations and geodynamic modeling[J]. Journal of Asian Earth Sciences, 2014, 86: 106~116.
    [28] 陈佩佩. 光滑粒子数值方法的改进及在岩土工程中的应用研究[D]. 北京: 北京交通大学, 2016. CHEN Peipei. Improvement of smoothed particle hydrodynamics and its applications in geotechnical engineering[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese with English abstract)
    [29] 刘洁. 天山上地幔对流与造山运动数值模拟[D]. 北京: 中国地震局地质研究所, 2006. LIU Jie. Numerical modeling of upper mantle convection and orogeny of the Tianshan mountains[D]. Beijing: Institute of Geology, China Earthquake Administration, 2006. (in Chinese with English abstract)
    [30] 杨少华, 李忠海. 一种基于有限元的岩石圈长期变形数值计算方法[J]. 地质力学学报, 2018, 24(6): 768~775. YANG Shaohua, LI Zhonghai. A numerical calculation approach based on FEM for long-term deformation of lithosphere[J]. Journal of Geomechanics, 2018, 24(6): 768~775. (in Chinese with English abstract)
    [31] 张雄, 刘岩, 马上. 无网格法的理论及应用[J]. 力学进展, 2009, 39(1): 1~36. ZHANG Xiong, LIU Yan, MA Shang. Meshfree methods and their applications[J]. Advances in Mechanics, 2009, 39(1): 1~36. (in Chinese with English abstract)
    [32] 郝鹏, 刘云贺, 刘哲, 等. 三维流体固体动力耦合模型研究[J]. 水利学报, 2012, 43(2): 246~252. HAO Peng, LIU Yunhe, LIU Zhe, et al. Study on three-dimensional fluid-solid dynamic interaction model[J]. Shuili Xuebao, 2012, 43(2): 246~252. (in Chinese with English abstract)
    [33] Morra G, Regenauer-Lieb K. A coupled solid-fluid method for modelling subduction[J]. Philosophical Magazine, 2006, 86(21/22): 3307~3323.
    [34] Liu S B, Currie C A. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction[J]. Tectonophysics, 2016, 666: 33~47.
    [35] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584): 319~324.
    [36] Willett S, Beaumont C, Fullsack P. Mechanical model for the tectonics of doubly vergent compressional orogens[J]. Geology, 1993, 21(4): 371~374.
    [37] Faccenna C, Oncken O, Holt A F, et al. Initiation of the Andean orogeny by lower mantle subduction[J]. Earth and Planetary Science Letters, 2017, 463: 189~201.
    [38] Sobolev S V, Babeyko A Y, Koulakov I, et al. Mechanism of the Andean orogeny: Insight from numerical modeling[A]. Oncken O, Chong G, Franz G, et al. The Andes: Active Subduction Orogeny[M]. Berlin, Heidelberg: Springer, 2006, 513~535.
    [39] Martinod J, Husson L, Roperch P, et al. Horizontal subduction zones, convergence velocity and the building of the Andes[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 299~309.
    [40] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788~790.
    [41] 孙玉军, 胡道功, 张怀, 等. 青藏高原东北缘岩石圈变形方式的动力学模拟研究[J]. 地球物理学进展, 2017, 32(6): 2383~2393. SUN Yujun, HU Daogong, ZHANG Huai, et al. Numerical study on the dynamics of lithospheric deformation pattern in the northeastern Tibetan Plateau[J]. Progress in Geophysics, 2017, 32(6): 2383~2393. (in Chinese with English abstract)
    [42] Lechmann S M, Schmalholz S M, Hetényi G, et al. Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(1): 616~644.
    [43] Chen L, Capitanio F A, Liu L J, et al. Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence[J]. Nature Communications, 2017, 8: 15992.
    [44] Lei X Q, Chen Y P, Zhao C B, et al. Three-dimensional thermo-mechanical modeling of the Cenozoic uplift of the Tianshan mountains driven tectonically by the Pamir and Tarim[J]. Journal of Asian Earth Sciences, 2013, 62: 797~811.
    [45] Dai L M, Li S Z, Li Z H, et al. Dynamic processes and mechanisms for collision to post-orogenic extension in the Western Dabie Orogen: Insights from numerical modeling[J]. Geological Journal, 2017, 52(S1): 44~58.
    [46] 武红岭, 施炜, 董树文, 等. 大巴山前陆叠加构造力学特征的模拟研究[J]. 地学前缘, 2009, 16(3): 190~196. WU Hongling, SHI Wei, DONG Shuwen, et al. A numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain foreland[J]. Earth Science Frontiers, 2009, 16(3): 190~196. (in Chinese with English abstract)
    [47] Zhao W L, Morgan W J. Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study[J]. Tectonics, 1987, 6(4): 489~504.
    [48] England P, Houseman G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664~3676.
    [49] Houseman G, England P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 12233~12249.
    [50] 罗焕炎, 徐煜坚, 宋惠珍, 等. 青藏高原近代隆起原因及其与地震关系的有限单元分析[J]. 地震地质, 1982, 4(1): 31~37. LUO Huanyan, XU Yujian, SONG Huizhen, et al. Finite element analysis for recent Qinghai-Xizang Plateau uplifting and its relation to seismicities[J]. Seismology and Geology, 1982, 4(1): 31~37. (in Chinese with English abstract)
    [51] Liu M, Yang Y Q. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 2361.
    [52] 汪素云, 陈培善. 中国及邻区现代构造应力场的数值模拟[J]. 地球物理学报, 1980, 23(1): 35~45. WANG Suyun, CHEN Peishan. A numerical simulation of the present tectonic stress field of China and its vicinity[J]. Chinese Journal of Geophysics, 1980, 23(1): 35~45. (in Chinese with English abstract)
    [53] 张东宁, 高龙生. 东亚地区应力场的三维数值模拟[J]. 中国地震, 1989, 5(4): 24~33. ZHANG Dongning, GAO Longsheng. Three dimensional numerical simulation of eastern Asian stress field[J]. Earthquake Research in China, 1989, 5(4): 24~33. (in Chinese with English abstract)
    [54] 张东宁, 许忠淮. 青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J]. 中国地震, 1994, 10(2): 136~143. ZHANG Dongning, XU Zhonghuai. Three dimensional Elasto-Visco numerical simulation of Qinghai-Xizang plateau’s recent tectonic stress field and it’s motion[J]. Earthquake Research in China, 1994, 10(2): 136~143. (in Chinese with English abstract)
    [55] Roecker S W, Sabitova T M, Vinnik L P, et al. Three-dimensional elastic wave velocity structure of the western and central Tien Shan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B9): 15779~15795.
    [56] 卢双疆, 何建坤. 青藏高原-天山大陆内部地壳变形三维数值模拟研究[J]. 地球物理学进展, 2013, 28(2): 624~632. LU Shuangjiang, HE Jiankun. Three-dimensional mechanical modeling of intracontinental deformation around the Tibetan Plateau and Tienshan region[J]. Progress in Geophysics, 2013, 28(2): 624~632. (in Chinese with English abstract)
    [57] 罗照华, 莫宣学, 邓晋福, 等. 从板片断离到岩石圈拆沉-东昆仑碰撞造山过程的岩石学记录[A]. 2005年全国岩石学与地球动力学研讨会论文摘要[C]. 杭州: 中国矿物岩石地球化学学会, 2005. LUO Zhaohua, MO Xuanxue, DENG Jinfu, et al. Petrological records of the orogenic process from plate fragment detachment to lithospheric devolution-East Kunlun collision[A]. Beijing: Chinese Society for Mineralogy, Petrology and Geochemistry, 2005. (in Chinese)
    [58] 刘成东. 东昆仑造山带东段花岗岩浆事件及岩浆混合作用[D]. 北京: 中国地质大学(北京), 2004. LIU Chengdong. Aggregate events and magmatic mixing in the eastern part of the eastern Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing), 2004. (in Chinese)
    [59] 权凯. 龙门山断裂带构造应力场数值模拟及区域地壳稳定性分析[D]. 北京: 中国地质大学(北京), 2014. QUAN Kai. Numerical Study on the tectonic stress field of Longmenshan fault zone and assessment of the regional crustal stability[D]. Beijing: China University of Geosciences (Beijing), 2014. (in Chinese with English abstract)
    [60] 付国超, 吕同艳, 孙东霞, 等. 2017年8月8日四川九寨沟7.0级地震发震构造浅析[J]. 地质力学学报, 2017, 23(6): 799~809. FU Guochao, Lü Tongyan, SUN Dongxia, et al. Seismogenic structure of the MS 7.0 earthquake on August 8, 2017 in Jiuzhaigou, Sichuan[J]. Journal of Geomechanics, 2017, 23(6): 799~809. (in Chinese with English abstract)
    [61] 尹力, 罗纲. 有限元数值模拟龙门山断裂带地震循环的地壳变形演化[J]. 地球物理学报, 2018, 61(4): 1238~1257. YIN Li, LUO Gang. Crustal deformation across the Longmen Shan fault zone from finite element simulation of seismic cycles[J]. Chinese Journal of Geophysics, 2018, 61(4): 1238~1257. (in Chinese with English abstract)
    [62] 杨巍然, 简平, 韩郁菁. 大别造山带加里东期高压超高压变质作用的确定及其意义[J]. 地学前缘, 2002, 9(4): 273~283. YANG Weiran, JIAN Ping, HAN Yujing. Determination and significance of Caledonian high-pressure and ultrahigh-pressure metamorphism in Dabie orogen[J]. Earth Science Frontiers, 2002, 9(4): 273~283. (in Chinese with English abstract)
    [63] 张国伟, 程顺有, 郭安林, 等. 秦岭-大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合[J]. 地质通报, 2004, 23(9/10): 846~853. ZHANG Guowei, CHENG Shunyou, GUO Anlin, et al. Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie with a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China, 2004, 23(9/10): 846~853. (in Chinese with English abstract)
    [64] 张岳桥, 施炜, 李建华, 等. 大巴山前陆弧形构造带形成机理分析[J]. 地质学报, 2010, 84(9): 1300~1315. ZHANG Yueqiao, SHI Wei, LI Jianhua, et al. Formation mechanism of the Dabashan foreland arc-shaped structural belt[J]. Acta Geologica Sinica, 2010, 84(9): 1300~1315. (in Chinese with English abstract)
    [65] 吴志春, 郭福生, 郑翔, 等. 基于PRB数据构建三维地质模型的技术方法研究[J]. 地质学报, 2015, 89(7): 1318~1330. WU Zhichun, GUO Fusheng, ZHENG Xiang, et al. The technical methods of three-dimension geological modeling based on PRB data[J]. Acta Geologica Sinica, 2015, 89(7): 1318~1330. (in Chinese with English abstract)
    [66] Cannon J, Lau E, Müller R D. Plate tectonic raster reconstruction in GPlates[J]. Solid Earth, 2014, 5(2): 741~755.
    [67] Müller R D, Russell S H J, Zahirovic S, et al. Modelling and visualising distributed crustal deformation of Australia and Zealandia using GPlates 2.0[J]. ASEG Extended Abstracts, 2018, (1): 1~7.
    [68] Koketsu K, Miyake H, Fujiwara H, et al. Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map[A]. Proceedings of the 14th World Conference on Earthquake Engineering[C]. Beijing: China Seismological Society, 2008.
    [69] Ichimura T, Agata R, Hori T, et al. Fast numerical simulation of crustal deformation using a three-dimensional high-fidelity model[J]. Geophysical Journal International, 2013, 195(3): 1730~1744.
    [70] Goffé B, Bousquet R, Henry P, et al. Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges[J]. Journal of Metamorphic Geology, 2003, 21(2): 123~141.
    [71] 宋菁菁, 王岳军, 范蔚茗, 等. 地壳放射性生热效应对大陆俯冲过程影响的数值模拟研究[J]. 大地构造与成矿学, 2018, 42(1): 60~72. SONG Jingjing, WANG Yuejun, FAN Weiming, et al. Effects of crustal radiogenic heat production on continental subduction: Insights from numerical modelling[J]. Geotectonica et Metallogenia, 2018, 42(1): 60~72.
    [72] 李三忠, 赵淑娟, 刘鑫, 等. 洋-陆转换与耦合过程[J]. 中国海洋大学学报, 2014, 44(10): 113~133, 160. LI Sanzhong, ZHAO Shujuan, LIU Xin, et al. Processes of ocean-continent transition and coupling[J]. Periodical of Ocean University of China, 2014, 44(10): 113~133, 160. (in Chinese with English abstract)
    [73] Axen G J, van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction[J]. Nature Geoscience, 2018, 11(12): 961~964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700