盐度对EA/HT-IRMS法测定水中氢、氧同位素组成的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Salinity on the Determination of Hydrogen and Oxygen Isotope Composition in Water by EA/HT-IRMS
  • 作者:金贵善 ; 刘汉彬 ; 张建锋 ; 李军杰 ; 张佳 ; 石晓
  • 英文作者:JIN Guishan;LIU Hanbin;ZHANG Jianfeng;LI Junjie;ZHANG Jia;SHI Xiao;Beijing Research Institute of Uranium Geology;
  • 关键词:元素分析仪-同位素质谱仪 ; ; 氢、氧同位素
  • 英文关键词:EA/HT-IRMS;;water;;hydrogen and oxygen isotope
  • 中文刊名:YKDZ
  • 英文刊名:Uranium Geology
  • 机构:核工业北京地质研究院;
  • 出版日期:2019-05-10
  • 出版单位:铀矿地质
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划项目“华南热液型铀矿基地深部探测技术示范”(编号:2017YFC0602600资助
  • 语种:中文;
  • 页:YKDZ201903008
  • 页数:6
  • CN:03
  • ISSN:11-1971/TL
  • 分类号:50-55
摘要
文章讨论了采用在线连续流元素分析仪-同位素质谱仪(EA/HT-IRMS)分析水中氢、氧同位素组成时盐度的影响。用高纯去离子水与NaCl配制不同盐度水进行对比测试发现,当水的电导率超过40 100μS/cm时,盐分影响水样的汽化,造成质谱峰出现拖尾现象。进行实际水样蒸馏前与蒸馏后对比测试,确定实际样品的电导率高于9 780μS/cm时,则需要进行蒸馏处理。水样电导率低于9 780μS/cm时,可以直接分析水中氢、氧同位素组成,分析精密度分别为1‰、 0.2‰。
        The hydrogen and oxygen isotope composition in water was analyzed by on-line continuous flow EA/HT-IRMS. Through the comparative testing of ultrapure water and water with different salinity, it was found that when the conductivity of water exceeded 40 100 μS/cm, the salinity affected the evaporation of water sample and caused the phenomenon of peak tailing in mass spectrometry. Further, the actual water sample was measured by comparison between distillation and non-distillation to determine that the water sample should be distilled when the conductivity was more than 9 780 μS/cm. However, when the conductivity of water sample is less than 9 780 μS/cm, the hydrogen and oxygen isotope composition in water can be directly and simultaneously analyzed, the precision of hydrogen and oxygen isotope composition is 1‰, 0.2‰, respectively.
引文
[1]Harrington G A,Cook P G,Herczeg A L.Spatial and temporal variability of ground water recharge in central Australia:Atracer approach[J].Groundwater,2002,40(5):5l8-528.
    [2]Giovanni C,Claude G.Analysis of isotopic ratios for the detection of illegal watering of beverages[J].Food Chemistry,2008,106(4):1399-1405.
    [3]丁悌平,高建飞,石国钰,等.长江水氢、氧同位素组成的时空变化及其环境意义[J].地质学报,2013,87(5):661-676.
    [4]范百龄,张东,陶正华,等.黄河水氢、氧同位素组成特征及其气候变化响应[J].中国环境科学,2017,37(5):1906-1914.
    [5]杨吉龙,柳富田,贾志,等.河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J].地球学报,2018,39(1):71-78.
    [6]方成,柳富田,孟利山,等.氢氧同位素在曹妃甸地区水循环研究中的应用[J].地质调查与研究,2014,37(2):102-107.
    [7]杨涛,薛紫晨,杨竞红,等.南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J].地球学报,2003,24(6):511-514.
    [8]刘汉彬,金贵善,李军杰,等.铀矿地质样品的稳定同位素组成测试方法[J].世界核地质科学,2013,30(3):174-179.
    [9]卢小亮,祝民强,邬铁.诸广岩体南部铀矿区稳定同位素组成及矿床成因分析[J].铀矿地质,2015,31(2):65-72,88.
    [10]Koehler G,Wassenaar L I,Hendry M J.An Automated Technique for MeasuringδD andδ18OValues of Porewater by Direct CO2and H2Equilibration[J].Anal.Chem.2000,72(22):5659-5664.
    [11]陶成,张美珍,杨华敏,等.Gas Bench II-IRMS水平衡氢同位素分析方法研究及应用[J].质谱学报,2006,27(4):215-219.
    [12]孙青,王晓华,石丽明,等.Gas Bench II-IRMS水平衡氢氧同位素分析方法研究[J].岩矿测试.2009,28(1):1-4.
    [13]刘运德,甘义群,余婷婷,等.微量水氢氧同位素在线同时测试技术---热转换元素分析同位素比质谱法[J].岩矿测试,2010,29(6):643-647.
    [14]袁红朝,张丽萍,耿梅梅,等.Flash HT和Gas Bench II-IRMS分析水中氢氧同位素的方法比较[J].质谱学报,2013,34(6):347-352.
    [15]陶成,刘文汇,杨华敏,等.油气田水中氢氧同位素分析新技术及应用[J].石油实验地质,2012,34(2):199-201.
    [16]张琳,陈宗宇,刘福亮,等.水中氢氧同位素不同分析方法的对比[J].岩矿测试,2011,30(2):160-163.
    [17]张琳,韩梅,贾艳棍,等.同位素比值质谱与激光吸收光谱分析水中氢氧同位素方法的比较[J].质谱学报,2015,36(6):559-564.
    [18]王学艳,张忠萍.基于电导率与TDS及全盐量的关系研究[J].黑龙江水利科技,2008,36(1):7-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700