地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite
  • 作者:邓黎旭 ; 刘勇胜 ; 宗克清 ; 朱律运 ; 胡兆初
  • 英文作者:Deng Lixu;Liu Yongsheng;Zong Keqing;Zhu Lüyun;Hu Zhaochu;College of Civil Engineering and Architecture,China Three Gorges University;State Key Laboratory of Geological Processes and Mineral Resources,School of Earth Sciences,China University of Geosciences;
  • 关键词:碳酸盐熔体交代作用 ; 岩石 ; 地球化学 ; 岩石圈地幔
  • 英文关键词:carbonate metasomatism;;petrology;;geochemistry;;lithospheric mantle
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:三峡大学土木与建筑学院;中国地质大学地球科学学院地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-11-27 14:05
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金项目(No.41530211);; 地质过程与矿产资源国家重点实验室自主研究课题专项经费项目(No.MSFGPMR01)
  • 语种:中文;
  • 页:DQKX201904005
  • 页数:15
  • CN:04
  • ISSN:42-1874/P
  • 分类号:61-75
摘要
碳酸盐熔体交代作用是指在地幔碳酸盐熔体与橄榄岩之间的相互作用,是改造地幔的重要方式之一.碳酸盐熔体交代会显著改变地幔橄榄岩的岩石和地球化学特征.首先,碳酸盐熔体交代作用会改变地幔橄榄岩中的矿物组成和比例.尽管碳酸盐熔体与橄榄岩的反应结果受控于初始反应物成分和反应的温压条件,但多数反应会导致橄榄岩中辉石的比例增加,而且有时还会出现磷灰石、独居石等副矿物.另外,在有些受碳酸盐熔体交代显著的橄榄岩的矿物中不仅可发现大量CO_2流体包裹体和碳酸盐熔体包裹体,也会出现特殊的反应边结构和熔体囊.其次,碳酸盐熔体在改造地幔橄榄岩过程中,会在地幔矿物中留下明显的地球化学指纹.在主量元素特征上,受到碳酸盐熔体交代的橄榄岩中的单斜辉石往往具有偏高的Mg~#和Ca/Al比值(>5);而在微量元素组成特征上的变化更为显著,包括单斜辉石具有高的(La/Yb)_N、Eu/Ti、Zr/Hf、Y/Ho比值,并显著亏损HFSE等.另外,值得注意的是,碳酸盐熔体与地幔橄榄岩反应的程度不同也会导致这些地球化学特征存在差异,因此在判别碳酸盐熔体交代作用时要采用岩石和地球化学特征相结合,多方面对比分析.对于引起地幔碳酸盐熔体交代作用的交代介质来源的识别主要用Mg-Zn-Ca-Sr等多种同位素体系进行示踪研究,尤其是近年来微区Sr同位素分析方法的建立为地幔碳酸盐熔体交代作用研究提供了重要手段.
        Carbonate metasomatism,one of the important ways to modify the mantle,is the interaction between carbonate melt and peridotite in the mantle.It can significantly change the petrology and geochemistry of the mantle peridotite.Firstly,composition and proportion of minerals in peridotite can be modified by carbonate metasomatism.Although results of carbonate metasomatism depend on the initial reactant composition and temperature and pressure conditions,most reactions result in the pyroxene enrichment in peridotite,and occurrence of accessory minerals such as apatite and monazite.In addition,minerals of peridotite having experienced significant metasomatism by carbonate melts are generally featured with abundant CO_2-fluid and-melt inclusions,and distinctive spongy texture and melt pockets.Secondly,the carbonate metasomatism can be well identified by some geochemical fingerprints as well.As to major elements,the clinopyroxenes in peridotite having experienced carbonate metasomatism are characterized by high Mg~#value and Ca/Al ratio(>5).In terms of trace elements,clinopyroxenes in peridotite having experienced carbonate metasomatism generally have higher(La/Yb)_N,Eu/Ti,Zr/Hf and Y/Ho ratios,and show depletions in HFSE.It is worth noting that the geochemical features may vary with the degree of carbonate metasomatism.In order to trace the source of carbonate melt caused metasomatism,Mg-Zn-Ca-Sr isotopic systems can be well used.Especially,in-situ Sr isotopic analysis method established in recent years provides us an important way to unravel the overlap of multiple carbonate metasomatism.
引文
Ackerman,L.,Spacek,P.,Magna,T.,et al.,2013.Alkaline and Carbonate-Rich Melt Metasomatism and Melting of Subcontinental Lithospheric Mantle:Evidence from Mantle Xenoliths,NE Bavaria,Bohemian Massif.Journal of Petrology,54(12):2597-2633.https://doi.org/10.1093/petrology/egt059
    Akizawa,N.,Miyake,A.,Ishikawa,A.,et al.,2017.Metasomatic PGE Mobilization by Carbonatitic Melt in the Mantle:Evidence from Sub-Mm-Scale SulfideCarbonaceous Glass Inclusion in Tahitian Harzburgite Xenolith.Chemical Geology,475:87-104.https://doi.org/10.1016/j.chemgeo.2017.10.037
    Jr Arevalo,R.,McDonough,W.F.,2010.Chemical Variations and Regional Diversity Observed in MORB.Chemical Geology,271(1-2):70-85.https://doi.org/10.1016/j.chemgeo.2009.12.013
    Bailey,D.K.,1982.Mantle Metasomatism-Continuing Chemical Change within the Earth.Nature,296(5857):525-530.https://doi.org/10.1038/296525a0
    Bailey,D.K.,1987.Mantle Metasomatism-Perspective and Prospect.Geological Society,London,Special Publications,30(1):1-13.https://doi.org/10.1144/gsl.sp.1987.030.01.02
    Bau,M.,1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho,Zr/Hf,and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology,123(3):323-333.doi:10.1007/s004100050159
    Bell,K.,Blenkinsop,J.,Cole,T.J.S.,et al.,1982.Evidence from Sr Isotopes for Long-Lived Heterogeneities in the Upper Mantle.Nature,298(5871):251-253.https://doi.org/10.1038/298251a0
    Bell,K.,Simonetti,A.,2010.Source of Parental Melts to Carbonatites-Critical Isotopic Constraints.Mineralogy and Petrology,98(1-4):77-89.
    Bellanca,A.,Masetti,D.,Neri,R.,1997.Rare Earth Elements in Limestone/Marlstone Couplets from the AlbianCenomanian Cismon Section(Venetian Region,Northern Italy):Assessing REE Sensitivity to Environmental Changes.Chemical Geology,141(3-4):141-152.https://doi.org/10.1016/s0009-2541(97)00058-2
    Bizimis,M.,Salters,V.J.M.,Dawson,J.B.,2003.The Brevity of Carbonatite Sources in the Mantle:Evidence from Hf Isotopes.Contributions to Mineralogy and Petrology,145(3):281-300.https://doi.org/10.1007/s00410-003-0452-3
    Blundy,J.,Dalton,J.,2000.Experimental Comparison of Trace Element Partitioning between Clinopyroxene and Melt in Carbonate and Silicate Systems,and Implications for Mantle Metasomatism.ContributionstoMineralogyand Petrology,139(3):356-371.https://doi.org/10.1007/s004100000139
    Brenan,J.M.,1993.Partitioning of Fluorine and Chlorine between Apatite and Aqueous Fluids at High Pressure and Temperature:Implications for the F and Cl Content of High P-TFluids.Earth and Planetary Science Letters,117(1-2):251-263.https://doi.org/10.1016/0012-821x(93)90131-r
    Bühn,B.,Rankin,A.H.,1999.Composition of Natural,Volatile-Rich Na-Ca-REE-Sr Carbonatitic Fluids Trapped in Fluid Inclusions.Geochimica et Cosmochimica Acta,63(22):3781-3797.https://doi.org/10.1016/s0016-7037(99)00180-5
    Bulatov,V.K.,Brey,G.P.,Girnis,A.V.,et al.,2014.Carbonated Sediment-Peridotite Interaction and Melting at7.5-12GPa.Lithos,200-201:368-385.https://doi.org/10.1016/j.lithos.2014.05.010
    Chen,C.F.,Liu,Y.S.,Feng,L.P.,et al.,2018.Calcium Isotope Evidence for Subduction-Enriched Lithospheric Mantle under the Northern North China Craton.Geochimica et Cosmochimica Acta,238:55-67.
    Chen,C.F.,Liu,Y.S.,Foley,S.F.,et al.,2017.Carbonated Sediment Recycling and Its Contribution to Lithospheric Refertilization under the Northern North China Craton.Chemical Geology,466:641-653.https://doi.org/10.13039/501100001809
    Chen,C.F.,Liu,Y.S.,Foley,S.F.,et al.,2016.Paleo-Asian Oceanic Slab under the North China Craton Revealed by Carbonatites Derived from Subducted Limestones.Geology,44(12):1039-1042.https://doi.org/10.1130/G38365.1
    Coltorti,M.,Bonadiman,C.,Hinton,R.W.,et al.,1999.Carbonatite Metasomatism of the Oceanic Upper Mantle:Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore,Indian Ocean.Journal of Petrology,40(1):133-165.https://doi.org/10.1093/petroj/40.1.133
    Dalou,C.,Koga,K.T.,Hammouda,T.,et al.,2009.Trace Element Partitioning between Carbonatitic Melts and Mantle Transition Zone Minerals:Implications for the Source of Carbonatites.Geochimica et Cosmochimica Acta,73(1):239-255.https://doi.org/10.1016/j.gca.2008.09.020
    Dalton,J.A.,Wood,B.J.,1993.The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle.Earth and Planetary Science Letters,119(4):511-525.https://doi.org/10.1016/0012-821x(93)90059-i
    Dasgupta,R.,Hirschmann,M.M.,2006.Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide.Nature,440(7084):659-662.https://doi.org/10.1038/nature04612
    Dasgupta,R.,Hirschmann,M.M.,2007.A Modified Iterative Sandwich Method for Determination of Near-Solidus Partial Melt Compositions.II.Application to Determination of Near-Solidus Melt Compositions of Carbonated Peridotite.Contributions to Mineralogy and Petrology,154(6):647-661.
    Dasgupta,R.,Hirschmann,M.M.,McDonough,W.F.,et al.,2009.Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6and 8.6GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts.Chemical Geology,262(1-2):57-77.https://doi.org/10.1016/j.chemgeo.2009.02.004
    Dasgupta,R.,Hirschmann,M.M.,Smith,N.D.,2007a.Partial Melting Experiments of Peridotite+CO2at 3GPa and Genesis of Alkalic Ocean Island Basalts.Journal of Petrology,48(11):2093-2124.https://doi.org/10.1093/petrology/egm053
    Dasgupta,R.,Hirschmann,M.M.,Smith,N.D.,2007b.Water Follows Carbon:CO2Incites Deep Silicate Melting and Dehydration beneath Mid-Ocean Ridges.Geology,35(2):135-138.https://doi.org/10.1130/g22856a.1
    Dasgupta,R.,Hirschmann,M.M.,Withers,A.C.,2004.Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous,Carbonated Eclogite under Upper Mantle Conditions.Earth and Planetary Science Letters,227(1-2):73-85.https://doi.org/10.1016/j.epsl.2004.08.004
    Dasgupta,R.,Mallik,A.,Tsuno,K.,et al.,2013.Carbon-DioxideRich Silicate Melt in the Earth's Upper Mantle.Nature,493(7431):211-215.https://doi.org/10.1038/nature11731
    Dautria,J.M.,Dupuy,C.,Takherist,D.,et al.,1992.Carbonate Metasomatism in the Lithospheric Mantle:Peridotitic Xenoliths from a Melilititic District of the Sahara Basin.Contributions to Mineralogy and Petrology,111(1):37-52.
    Dawson,J.B.,1984.Contrasting Types of Upper-Mantle Metasomatism?Developments in Petrology,11(2):289-294.https://doi.org/10.1016/B978-0-444-42274-3.50030-5
    Deines,P.,2002.The Carbon Isotope Geochemistry of Mantle Xenoliths.Earth-Science Reviews,58(3-4):247-278.https://doi.org/10.1016/s0012-8252(02)00064-8
    Deng,L.X.,Liu,Y.S.,Zong,K.Q.,et al.,2017.Trace Element and Sr Isotope Records of Multi-Episode Carbonatite Metasomatism on the Eastern Margin of the North China Craton.Geochemistry,Geophysics,Geosystems,18(1):220-237.https://doi.org/10.1002/2016gc006618
    Dixon,J.,Clague,D.A.,Cousens,B.,et al.,2008.Carbonatite and Silicate Melt Metasomatism of the Mantle Surrounding the Hawaiian Plume:Evidence from Volatiles,Trace Elements,and Radiogenic Isotopes in Rejuvenated-Stage Lavas from Niihau,Hawaii.Geochemistry,Geophysics,Geosystems,9(9):Q09005.https://doi.org/10.1029/2008gc002076
    Dobson,D.P.,Jones,A.P.,Rabe,R.,et al.,1996.In-Situ Measurement of Viscosity and Density of Carbonate Melts at High Pressure.Earth and Planetary Science Letters,143(1-4):207-215.https://doi.org/10.1016/0012-821x(96)00139-2
    Du,W.,Li,L.,Weidner,D.J.,2018.Time Scale of Partial Melting of KLB-1Peridotite:Constrained from Experimental Observation and Thermodynamic Models.Journal of Earth Science,29(2):245-254.https://doi.org/10.1007/s12583-018-0839-8
    Ducea,M.N.,Saleeby,J.,Morrison,J.,et al.,2005.Subducted Carbonates,Metasomatism of Mantle Wedges,and Possible Connections to Diamond Formation:An Example from California.American Mineralogist,90(5-6):864-870.https://doi.org/10.2138/am.2005.1670
    Dupuy,C.,Liotard,J.M.,Dostal,J.,1992.Zr/Hf Fractionation in Intraplate Basaltic Rocks:Carbonate Metasomatism in the Mantle Source.Geochimica et Cosmochimica Acta,56(6):2417-2423.https://doi.org/10.1016/0016-7037(92)90198-r
    Fan,H.R.,Hu,F.F.,Yang,K.F.,et al.,2014.Integrated U-Pb and Sm-Nd Geochronology for a REE-Rich Carbonatite Dyke at the Giant Bayan Obo REE Deposit,Northern China.Ore Geology Reviews,63(2):510-519.https://doi.org/10.1016/j.oregeorev.2014.03.005
    Fan,H.R.,Xie,Y.H.,Wang,K.Y.,et al.,2001.Carbonatitic Fluids and REE Mineralization.Earth Science Frontiers,8(4):289-295(in Chinese with English abstract).
    Fischer,T.P.,Burnard,P.,Marty,B.,et al.,2009.UpperMantle Volatile Chemistry at Oldoinyo Lengai Volcano and the Origin of Carbonatites.Nature,459(7243):77-80.https://doi.org/10.1038/nature07977
    Foley,S.F.,2008.Rejuvenation and Erosion of the Cratonic Lithosphere.Nature Geoscience,1(8):503-510.https://doi.org/10.1038/ngeo261
    Frost,D.J.,McCammon,C.A.,2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences,36(1):389-420.
    Gervasoni,F.,Klemme,S.,Rohrbach,A.,et al.,2017.Experimental Constraints on Mantle Metasomatism Caused by Silicate and Carbonate Melts.Lithos,282-283:173-186.https://doi.org/10.1016/j.lithos.2017.03.004
    Gorring,M.L.,Kay,S.M.,2000.Carbonatite Metasomatized Peridotite Xenoliths from Southern Patagonia:Implications for Lithospheric Processes and Neogene Plateau Magmatism.Contributions to Mineralogy and Petrology,140(1):55-72.https://doi.org/10.1007/s004100000164
    Green,D.H.,Wallace,M.E.,1988.Mantle Metasomatism by Ephemeral Carbonatite Melts.Nature,336(6198):459-462.https://doi.org/10.1038/336459a0
    Green,T.H.,Adam,J.,Siel,S.H.,1992.Trace Element Partitioning between Silicate Minerals and Carbonatite at 25kbar and Application to Mantle Metasomatism.Mineralogy and Petrology,46(3):179-184.https://doi.org/10.1007/bf01164645
    Haggerty,S.E.,1994.Superkimberlites:A Geodynamic Diamond Window to the Earth's Core.EarthandPlanetaryScienceLetters,122(1-2):57-69.https://doi.org/10.1016/0012-821x(94)90051-5
    Hamilton,D.L.,Freestone,I.C.,Dawson,J.B.,et al.,1979.Origin of Carbonatites by Liquid Immiscibility.Nature,279(5708):52-54.https://doi.org/10.1038/279052a0
    Hammouda,T.,Laporte,D.,2000.Ultrafast Mantle Impregnation by Carbonatite Melts.Geology,28(3):283-285.
    Hauri,E.H.,Shimizu,N.,Dieu,J.J.,et al.,1993.Evidence for Hotspot-Related Carbonatite Metasomatism in the Oceanic Upper Mantle.Nature,365(6443):221-227.
    Hawkesworth,C.J.,Rogers,N.W.,van Calsteren,P.W.C.,et al.,1984.Mantle Enrichment Processes.Nature,311(5984):331-335.https://doi.org/10.1038/311331a0
    Hoernle,K.,Tilton,G.,Le Bas,M.J.,et al.,2002.Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites:Mantle Recycling of Oceanic Crustal Carbonate.Contributions to Mineralogy and Petrology,142(5):520-542.https://doi.org/10.1007/s004100100308
    Hou,Z.Q.,Liu,Y.,Tian,S.H.,et al.,2015.Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments.Scientific Reports,5:10231.https://doi.org/10.1038/srep10231
    Humphreys,E.R.,Bailey,K.,Hawkesworth,C.J.,et al.,2015.Carbonate Inclusions in Mantle Olivines:Mantle Carbonatite.Geochmica et Cosmochimica Acta,100(13):155-168.
    Ionov,D.A.,1998.Trace Element Composition of MantleDerived Carbonates and Coexisting Phasesin Peridotite Xenoliths from Alkali Basalts.JournalofPetrology,39(11-12):1931-1941.https://doi.org/10.1093/petroj/39.11-12.1931
    Ionov,D.A.,Chanefo,I.,Bodinier,J.L.,2005.Origin of Fe-Rich Lherzolites and Wehrlites from Tok,SE Siberia by Reactive Melt Percolation in Refractory Mantle Peridotites.Contributions to Mineralogy and Petrology,150(3):335-353.https://doi.org/10.1007/s00410-005-0026-7
    Ionov,D.A.,Dupuy,C.,O'Reilly,S.Y.,et al.,1993.Carbonated Peridotite Xenoliths from Spitsbergen:Implications for Trace Element Signature of Mantle Carbonate Metasomatism.Earth and Planetary Science Letters,119(3):283-297.https://doi.org/10.1016/0012-821x(93)90139-z
    Ionov,D.A.,O'Reilly,S.Y.,Genshaft,Y.S.,et al.,1996.Carbonate-Bearing Mantle Peridotite Xenoliths from Spitsbergen:Phase Relationships,Mineral Compositions and Trace-Element Residence.Contributions to Mineralogy and Petrology,125(4):375-392.https://doi.org/10.1007/s004100050229
    Irber,W.,1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho,and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta,63(3-4):489-508.https://doi.org/10.1016/s0016-7037(99)00027-7
    Jochum,K.P.,McDonough,W.F.,Palme,H.,et al.,1989.Compositional Constraints on the Continental Lithospheric Mantle from Trace Elements in Spinel Peridotite Xenoliths.Nature,340(6234):548-550.https://doi.org/10.1038/340548a0
    Jochum,K.P.,Seufert,H.M.,Spettel,B.,et al.,1986.The Solar-System Abundances of Nb,Ta,and Y,and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies.Geochimica et Cosmochimica Acta,50(6):1173-1183.https://doi.org/10.1016/0016-7037(86)90400-x
    Kalfoun,F.,Ionov,D.,Merlet,C.,2002.HFSE Residence and Nb/Ta Ratios in Metasomatised,Rutile-Bearing Mantle Peridotites.Earth and Planetary Science Letters,199(1-2):49-65.https://doi.org/10.1016/s0012-821x(02)00555-1
    Kim,N.K.,Choi,S.H.,Dale,C.W.,2016.Sulfide-Scale Insights into Platinum-Group Element Behavior during Carbonate Mantle Metasomatism and Evolution of Spitsbergen Lithospheric Mantle.Lithos,246-247:182-196.
    Klemme,S.,van der Laan,S.R.,Foley,S.F.,et al.,1995.Experimentally Determined Trace and Minor Element Partitioning between Clinopyroxene and Carbonatite Melt under Upper Mantle Conditions.Earth and Planetary Science Letters,133(3-4):439-448.https://doi.org/10.1016/0012-821x(95)00098-w
    Kogiso,T.,Tatsumi,Y.,Nakano,S.,1997.Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust:1.Experiments and Implications for the Origin of Ocean Island Basalts.Earth and Planetary Science Letters,148(1-2):193-205.https://doi.org/10.1016/s0012-821x(97)00018-6
    Laurora,A.,Mazzucchelli,M.,Rivalenti,G.,et al.,2001.Metasomatism and Melting in Carbonated Peridotite Xenoliths from the Mantle Wedge:The Gobernador Gregores Case(Southern Patagonia).Journal of Petrology,42(1):69-87.https://doi.org/10.1093/petrology/42.1.69
    Li,S.G.,Wang,Y.,2018.Formation Time of the Big Mantle Wedge beneath Eastern China and a New Lithospheric Thinning Mechanism of the North China CratonGeodynamic Effects of Deep Recycled Carbon.Science China Earth Sciences,61(7):853-868.https://doi.org/10.1007/s11430-017-9217-7
    Ling,M.X.,Liu,Y.L.,Williams,I.S.,et al.,2013.Formation of the World's Largest REE Deposit through Protracted Fluxing of Carbonatite by Subduction-Derived Fluids.Scientific Reports,3:1776.
    Liu,J.Q.,Chen,L.H.,Ni,P.,2010.Fluid/Melt Inclusions in Cenozoic Mantle Xenoliths from Linqu,Shandong Province,Eastern China:Implications for Asthenosphere-Lithosphere Interactions.Chinese Science Bulletin,55(11):1067-1076.https://doi.org/10.1007/s11434-009-0622-4
    Liu,S.A.,Wang,Z.Z.,Li,S.G.,et al.,2016.Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters,444:169-178.
    Liu,Y.S.,He,D.T.,Gao,C.G.,et al.,2015.First Direct Evidence of Sedimentary Carbonate Recycling in Subduction-Related Xenoliths.Scientific Reports,5(1):11547.
    Malaspina,N.,Scambelluri,M.,Poli,S.,et al.,2010.The Oxidation State of Mantle Wedge Majoritic Garnet Websterites Metasomatised by C-Bearing Subduction Fluids.Earth and Planetary Science Letters,298(3-4):417-426.https://doi.org/10.1016/j.epsl.2010.08.022
    McDonough,W.F.,Sun,S.S.,1995.The Composition of the Earth.Chemical Geology,120(3-4):223-253.https://doi.org/10.1016/0009-2541(94)00140-4
    Nasir,S.,Al-Khirbash,S.,Rollinson,H.,et al.,2011.Petrogenesis of Early Cretaceous Carbonatite and Ultramafic Lamprophyres in a Diatreme in the Batain Nappes,Eastern Oman Continental Margin.Contributions to Mineralogy and Petrology,161(1):47-74.https://doi.org/10.1007/s00410-010-0521-3
    Neumann,E.R.,Wulff-Pedersen,E.,Pearson,N.J.,et al.,2002.Mantle Xenoliths from Tenerife(Canary Islands):Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts Inducing Ca Metasomatism.Journal of Petrology,43(5):825-857.https://doi.org/10.1093/petrology/43.5.825
    O'Reilly,S.Y.,Griffin,W.L.,2012.Mantle Metasomatism.In:O'Reilly,S.Y.,Griffin,W.L.,eds.,Lecture Notes in Earth System Sciences.Springer Berlin Heidelberg,Berlin:471-533.https://doi.org/10.1007/978-3-642-28394-9_12
    Rudnick,R.L.,McDonough,W.F.,Chappell,B.W.,1993.Carbonatite Metasomatism in the Northern Tanzanian Mantle:Petrographic and Geochemical Characteristics.Earth and Planetary Science Letters,114(4):463-475.https://doi.org/10.1016/0012-821x(93)90076-l
    Sasada,T.,Hiyagon,H.,Bell,K.,et al.,1997.Mantle-Derived Noble Gases in Carbonatites.Geochimica et Cosmochimica Acta,61(19):4219-4228.https://doi.org/10.1016/s0016-7037(97)00202-0
    Scott,J.M.,Hodgkinson,A.,Palin,J.M.,et al.,2014a.Ancient Melt Depletion Overprinted by Young Carbonatitic Metasomatism in the New Zealand Lithospheric Mantle.Contributions to Mineralogy and Petrology,167(1):1-17.https://doi.org/10.1007/s00410-014-0963-0
    Scott,J.M.,Waight,T.E.,van der Meer,Q.H.A.,et al.,2014b.Metasomatized Ancient Lithospheric Mantle beneath the Young Zealandia Microcontinent and Its Role in HIMU-Like Intraplate Magmatism.Geochemistry,Geophysics,Geosystems,15(9):3477-3501.https://doi.org/10.1002/2014gc005300
    Sharygin,I.S.,Shatskiy,A.,Litasov,K.D.,et al.,2018.Interaction of Peridotite with Ca-Rich Carbonatite Melt at3.1and 6.5GPa:Implication for Merwinite Formation in Upper Mantle,and for the Metasomatic Origin of Sublithospheric Diamonds with Ca-Rich Suite of Inclusions.Contributions to Mineralogy and Petrology,173(3):22.https://doi.org/10.1007/s00410-017-1432-3
    Shaw,C.S.J.,Dingwell,D.B.,2008.Experimental Peridotite-Melt Reaction at One Atmosphere:A Textural and Chemical Study.Contributions to Mineralogy and Petrology,155(2):199-214.https://doi.org/10.1007/s00410-007-0237-1
    Shaw,C.S.J.,Heidelbach,F.,Dingwell,D.B.,2006.The Origin of Reaction Textures in Mantle Peridotite Xenoliths from Sal Island,Cape Verde:The Case for“Metasomatism”by the Host Lava.Contributions to Mineralogy and Petrology,151(6):681-697.https://doi.org/10.1007/s00410-006-0087-2
    Sokol,A.G.,Kruk,A.N.,Chebotarev,D.A.,et al.,2016.Carbonatite Melt-Peridotite Interaction at 5.5-7.0GPa:Implications for Metasomatism in Lithospheric Mantle.Lithos,248-251:66-79.https://doi.org/10.13039/501100006769
    Song,W.L.,Xu,C.,Smith,M.P.,et al.,2018.Genesis of the World's Largest Rare Earth Element Deposit,Bayan Obo,China:Protracted Mineralization Evolution over~1b.y.Geology,46(4):323-326.
    Stagno,V.,Frost,D.J.,2010.Carbon Speciation in the Asthenosphere:Experimental Measurements of the Redox Conditions at Which Carbonate-Bearing Melts Coexist with Graphite or Diamond in Peridotite Assemblages.Earth and Planetary Science Letters,300(1-2):72-84.https://doi.org/10.1016/j.epsl.2010.09.038
    Su,B.X.,Zhang,H.F.,Sakyi,P.A.,et al.,2010.The Origin of Spongy Texture in Minerals of Mantle Xenoliths from the Western Qinling,Central China.Contributions to Mineralogy and Petrology,161(3):465-482.https://doi.org/10.1007/s00410-010-0543-x
    Su,B.X.,Zhang,H.F.,Ying,J.F.,et al.,2012.Metasomatized Lithospheric Mantle beneath the Western Qinling,Central China:Insight into Carbonatite Melts in the Mantle.The Journal of Geology,120(6):671-681.https://doi.org/10.1086/667956
    Sun,J.,Liu,C.Z.,Wu,F.Y.,et al.,2012.Metasomatic Origin of Clinopyroxene in Archean Mantle Xenoliths from Hebi,North China Craton:Trace-Element and SrIsotope Constraints.Chemical Geology,328:123-136.https://doi.org/10.1016/j.chemgeo.2012.03.014
    Sun,J.,Zhu,X.K.,Fang,N.,et al.,2012.Magnesium Isotopic Constraint on the Genesis of Bayan Obo Ore Deposit.Mineral Deposits,31(S1):977-978(in Chinese).
    Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sweeney,R.J.,Green,D.H.,Sie,S.H.,1992.Trace and Minor Element Partitioning between Garnet and Amphibole and Carbonatitic Melt.Earth and Planetary Science Letters,113(1-2):1-14.https://doi.org/10.1016/0012-821x(92)90207-c
    Sweeney,R.J.,Prozesky,V.,Przybylowicz,W.,1995.Selected Trace and Minor Element Partitioning between Peridotite Minerals and Carbonatite Melts at 18-46kb Pressure.Geochimica et Cosmochimica Acta,59(18):3671-3683.https://doi.org/10.1016/0016-7037(95)00270-a
    Tanaka,K.,Miura,N.,Asahara,Y.,et al.,2003.Rare Earth Element and Strontium Isotopic Study of SeamountType Limestones in Mesozoic Accretionary Complex of Southern Chichibu Terrane,Central Japan:Implication for Incorporation Process of Seawater REE into Limestones.Geochemical Journal,37(2):163-180.https://doi.org/10.2343/geochemj.37.163
    Tappe,S.,Romer,R.L.,Stracke,A.,et al.,2017.Sources and Mobility of Carbonate Melts beneath Cratons,with Implications for Deep Carbon Cycling,Metasomatism and Rift Initiation.Earth and Planetary Science Letters,466:152-167.
    Thibault,Y.,Edgar,A.D.,Lloyd,F.E.,1992.Experimental Investigation of Melts from a Carbonated Phlogopite Lherzolite;Implications for Metasomatism in the Continental Lithospheric Mantle.American Mineralogist,77(7):784-794.
    Treiman,A.H.,Schedl,A.,1983.Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers.The Journal of Geology,91(4):437-447.
    Wallace,M.E.,Green,D.H.,1988.An Experimental Determination of Primary Carbonatite Magma Composition.Nature,335(6188):343-346.https://doi.org/10.1038/335343a0
    Walter,M.J.,Bulanova,G.P.,Armstrong,L.S.,et al.,2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature,454(7204):622-625.https://doi.org/10.1038/nature07132
    Wang,C.,Jin,Z.M.,Gao,S.,et al.,2010.Eclogite-Melt/Peridotite Reaction:Experimental Constrains on the Destruction Mechanism of the North China Craton.Science China Earth Sciences,40(5):541-555(in Chinese).
    Wang,C.,Liu,Y.S.,Zhang,J.F.,et al.,2016a.Carbonate Melt form Subduction Zone:The Key for Craton Destruction.Goldschmidt Conference Abstracts,3307.
    Wang,C.Y.,Liu,Y.S.,Min,N.,et al.,2016b.Paleo-Asian Oceanic Subduction-Related Modification of the Lithospheric Mantle under the North China Craton:Evidence from Peridotite Xenoliths in the Datong Basalts.Lithos,261:109-127.
    Wang,R.X.,Liu,Y.S.,Zong,K.Q.,et al.,2017.In-Situ Trace Elements and Sr Isotopes in Peridotite Xenoliths from Jining:Implications for Lithospheric Mantle Evolution.Earth Science,42(4):511-526(in Chinese with English abstract).
    Wang,X.J.,Chen,L.H.,Hofmann,A.W.,et al.,2018.Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume.Proceedings of the National Academy of Sciences of the United States of America,115(35):8682-8687.
    Wang,Y.F.,Zhang,J.F.,2013.The Reaction Mechanism of Sieve-Textured Orthopyroxene:Implications for Lithospheric Mantle Rejuvenation.Acta Petrologica et Mineralogica,32(5):604-612(in Chinese with English abstract).
    Woo,Y.,Yang,K.,Kil,Y.,et al.,2014.Silica-and LREE-Enriched Spinel Peridotite Xenoliths from the Quaternary Intraplate Alkali Basalt,Jeju Island,South Korea:Old Subarc Fragments?.Lithos,208-209:312-323.https://doi.org/10.1016/j.lithos.2014.09.003
    Woolley,A.R.,Kjarsgaard,B.A.,2008.Carbonatite Occurrences of the World:Map and Database.Geological Survey of Canada,5796:1-28.
    Wu,D.,Liu,Y.S.,Chen,C.F.,et al.,2017.In-Situ Trace Element and Sr Isotopic Compositions of Mantle Xenoliths Constrain Two-Stage Metasomatism beneath the Northern North China Craton.Lithos,288-289:338-351.
    Xiao,Y.,Zhang,H.F.,Fan,W.M.,et al.,2010.Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone,Eastern North China Craton:Evidence from Petrology and Geochemistry of Peridotite Xenoliths.Lithos,117(1-4):229-246.https://doi.org/10.1016/j.lithos.2010.02.017
    Yaxley,G.M.,Crawford,A.J.,Green,D.H.,1991.Evidence for Carbonatite Metasomatism in Spinel Peridotite Xenoliths from Western Victoria,Australia.Earth and Planetary Science Letters,107(2):305-317.https://doi.org/10.1016/0012-821x(91)90078-v
    Yaxley,G.M.,Green,D.H.,1996.Experimental Reconstruction of Sodic Dolomitic Carbonatite Melts from Metasomatised Lithosphere.Contributions to Mineralogy and Petrology,124(3-4):359-369.https://doi.org/10.1007/s004100050196
    Yaxley,G.M.,Green,D.H.,Kamenetsky,V.,1998.Carbonatite Metasomatism in the Southeastern Australian Lithosphere.Journal of Petrology,39(11-12):1917-1930.https://doi.org/10.1093/petroj/39.11-12.1917
    Yaxley,G.,Kamenetsky,V.,Green,D.,et al.,1997.Glasses in Mantle Xenoliths from Western Victoria,Australia,and Their Relevance to Mantle Processes.Earth and Planetary Science Letters,148(3-4):433-446.https://doi.org/10.1016/s0012-821x(97)00058-7
    Young,E.D.,Galy,A.,2004.The Isotope Geochemistry and Cosmochemistry of Magnesium.Reviews in Mineralogy and Geochemistry,55(1):197-230.https://doi.org/10.2138/gsrmg.55.1.197
    Zhang,G.L.,Chen,L.H.,Jackson,M.G.,et al.,2017.Evolution of Carbonated Melt to Alkali Basalt in the South China Sea.Nature Geoscience,10(3):229-235.https://doi.org/10.1038/ngeo2877
    Zhang,H.M.,Li,S.G.,2012.Deep Carbon Recycling and Isotope Trcing:Review and Prospect.Science China Earth Sciences,42(10):1459-1472(in Chinese).
    Zhang,J.F.,Wang,C.G.,Xu,H.J.,et al.,2015.Partial Melting and Crust-Mantle Interaction in Subduction Channels:Constraints from Experimental Petrology.Science China:Earth Sciences,45(9):1270-1284(in Chinese).
    Zong,K.Q.,Liu,Y.S.,2018.Carbonate Metasomatism in the Lithospheric Mantle:Implications for Cratonic Destruction in North China.Science China Earth Sciences,48(6):732-752(in Chinese).
    范宏瑞,谢奕汉,王凯怡,等,2001.碳酸岩流体及其稀土成矿作用.地学前缘,8(4):289-295.
    孙剑,朱祥坤,房楠,等,2012.白云鄂博矿床成因的Mg同位素制约.矿床地质,31(S1):977-978.
    王超,金振民,高山,等,2010.华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制:实验约束.中国科学:地球科学,40(5):541-555.
    王瑞雪,刘勇胜,宗克清,等,2017.内蒙古集宁橄榄岩包体微区微量元素与Sr同位素特征及其岩石圈地幔演化的指示意义.地球科学,42(4):511-526.
    王永锋,章军锋,2013.斜方辉石筛状反应边的成因机制及其对岩石圈地幔性质转变的意义.岩石矿物学杂志,32(5):604-612.
    张洪铭,李曙光,2012.深部碳循环及同位素示踪:回顾与展望.中国科学:地球科学,42(10):1459-1472.
    章军锋,王春光,续海金,等,2015.俯冲隧道中的部分熔融和壳幔相互作用:实验岩石学制约.中国科学:地球科学,45(9):1270-1284.
    宗克清,刘勇胜,2018.华北克拉通东部岩石圈地幔碳酸盐熔体交代作用与克拉通破坏.中国科学:地球科学,48(6):732-752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700