页岩横向各向同性地应力预测模型中弹性参数的确定方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:METHOD FOR DETERMINING ELASTIC PARAMETERS FOR THE PREDICTION MODEL OF SHALE TRANSVERSELY ISOTROPIC GEOSTRESS
  • 作者:田鹤 ; 曾联波 ; 舒志国 ; 包汉勇 ; 徐翔 ; 毛哲 ; 王小垚
  • 英文作者:TIAN He;ZENG Lianbo;SHU Zhiguo;BAO Hanyong;XU Xiang;MAO Zhe;WANG Xiaoyao;State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum;College of Geosciences, China University of Petroleum (Beijing);Jianghan Oilfield Company,SINOPEC;Research Institute of Petroleum Exploration and Development,Jianghan Oilfield Company, SINOPEC;
  • 关键词:页岩 ; 地应力 ; 各向异性模型 ; 弹性参数
  • 英文关键词:shale;;geostress;;anisotropic model;;elastic parameter
  • 中文刊名:DZLX
  • 英文刊名:Journal of Geomechanics
  • 机构:油气资源与探测国家重点实验室(中国石油大学(北京));中国石油大学(北京)地球科学学院;中国石化江汉油田分公司;中国石化江汉油田分公司勘探开发研究院;
  • 出版日期:2019-04-15
  • 出版单位:地质力学学报
  • 年:2019
  • 期:v.25
  • 基金:国家自然科学基金委员会—中石化联合基金(U1663203)
  • 语种:中文;
  • 页:DZLX201902058
  • 页数:11
  • CN:02
  • ISSN:11-3672/P
  • 分类号:20-30
摘要
水力压裂是页岩气开采的重要方式,地应力分布是页岩水力压裂的地质依据。基于横向各向同性模型进行测井地应力计算时需要首先确定C_(11)、C_(33)、C_(44)、C_(66)和C_(13)五个弹性参数,其中C_(11)和C_(13)利用测井资料无法直接获得,需要通过预测模型进行估算。利用四川盆地东南部龙马溪组页岩实测超声波资料,建立了五种弹性参数的预测模型,根据模型中是否应用斯通利波将其分为两类,一类是有斯通利波资料的ANNIE、MANNIE1和MANNIE2模型;另一类为缺少斯通利波资料的MANNIE3和V-reg模型。对比不同模型的预测效果,结果表明:第一类模型中MANNIE1模型确定的弹性参数与实测值偏差小,效果最好;第二类模型中V-reg模型的预测效果优于MANNIE3模型。两类模型相比,缺少斯通利波模型的预测效果稍差,但可以同时预测C_(11)、C_(66)和C_(13),在实际应用过程中具有更大的适用范围。利用V-reg模型确定的弹性参数在焦石坝地区测井地应力计算中进行应用,计算的地应力值与实测值误差小于10%,能够更准确的反映实际地层情况。
        The distribution of geostress constitutes the geological basis for shale hydraulic fracturing, which is an important way of shale gas exploitation. The calculation of shale geostress based on the transversely isotropic model needs to obtain five elastic parameters C_(11), C_(33), C_(44), C_(66), and C_(13), among which C_(11) and C_(13) can not be obtained directly from the logging data, and prediction models need to be established for the estimation. Based on the measured ultrasonic data of the Longmaxi Formation shale in the southeast of the Sichuan Basin, five kinds of prediction models for elastic parameters were established. They could be divided into two types by whether or not the Stoneley wave are used. Type Ⅰ is the ANNIE, MANNIE1 and MANNIE2 models with Stoneley wave, and type Ⅱ is the MANNIE3 and V-reg models which lack for Stoneley wave. The rationalities of stiffness tensors predicted by different models were compared and evaluated. Among these models, model MANNIE1 has the smallest deviation and the best effect in type Ⅰ models. Elastic parameter calculated by V-reg model makes more deviation compared to MANNIE1, but type Ⅱ models has wider range of application to get all three parameters C_(11), C_(66) and C_(13). The elastic parameters determined by V-reg model are applied in the calculation of geostress in Jiaoshiba area. The error between calculated gestress and measured value is less than 10%, which can reflects the actual formation more accurately.
引文
[1] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136~140.ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136~140. (in Chinese with English abstract)
    [2] 张金川, 姜生玲, 唐玄, 等. 我国页岩气富集类型及资源特点[J]. 天然气工业, 2009, 29(12): 109~114.ZHANG Jinchuan, JIANG Shengling, TANG Xuan, et al. Accumulation types and resources characteristics of shale gas in China[J]. Natural Gas Industry, 2009, 29(12): 109~114. (in Chinese with English abstract)
    [3] 郗兆栋, 唐书恒, 王静, 等. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 2018, 92(6): 1313~1323.XI Zhaodong, TANG Shuheng, WANG Jing, et al. Evaluation parameters study of selecting favorable shale gas areas in Southern China[J]. Acta Geologica Sinica, 2018, 92(6): 1313~1323. (in Chinese with English abstract)
    [4] 曾联波, 肖淑蓉, 罗安湘. 陕甘宁盆地中部靖安地区现今应力场三维有限元数值模拟及其在油田开发中的意义[J]. 地质力学学报, 1998, 4(3): 58~63.ZENG Lianbo, XIAO Shurong, LUO Anxiang. The three-dimensional finite element numerical simulation of modern stress field and its significance in the oil development of the Jing’an area in the central Shaanxi-Gansu-Ningxia basin[J]. Journal of Geomechanics, 1998, 4(3): 58~63. (in Chinese with English abstract)
    [5] 祖克威, 曾联波, 刘喜中, 等. 厚层河道砂体地应力分布影响因素分析[J]. 地质力学学报, 2014, 20(2): 149~158.ZU Kewei, ZENG Lianbo, LIU Xizhong, et al. Analysis of influencing factors for ground stress in channel sandstone[J]. Journal of Geomechanics, 2014, 20(2): 149~158. (in Chinese with English abstract)
    [6] 毛哲, 曾联波, 秦龙卜, 等. 徐家围子断陷深层火石岭组致密火山岩储层地应力分布规律研究[J]. 地质力学学报, 2018, 24(3): 321~331.MAO Zhe, ZENG Lianbo, QIN Longbu, et al. Research on ground stress distribution rules of deep tight volcanic rock reservoirs in the Huoshiling formation, Xujiaweizi fault depression[J]. Journal of Geomechanics, 2018, 24(3): 321~331. (in Chinese with English abstract)
    [7] 马建海, 孙建孟. 用测井资料计算地层应力[J]. 测井技术, 2002, 26(4): 347~351.MA Jianhai, SUN Jianmeng. Calculation of formation stress using logging data[J]. Well Logging Technology, 2002, 26(4): 347~351. (in Chinese with English abstract)
    [8] Johnston J E, Christensen N I. Seismic anisotropy of shales[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 5991~6003.
    [9] Suarez-Rivera R, Deenadayalu C, Yang Y K. Unlocking the unconventional oil and gas reservoirs: The effect of laminated heterogeneity in wellbore stability and completion of tight gas shale reservoirs[R]. Houston, Texas: OTC, 2009.
    [10] Higgins S M, Goodwin S A, Donald A, et al. Anisotropic stress models improve completion design in the Baxter shale[R]. Denver, Colorado: SPE, 2008.
    [11] 宋连腾, 刘忠华, 李潮流, 等. 基于横向各向同性模型的致密砂岩地应力测井评价方法[J]. 石油学报, 2015, 36(6): 707~714.SONG Lianteng, LIU Zhonghua, LI Chaoliu, et al. Geostress logging evaluation method of tight sandstone based on transversely isotropic model[J]. Acta Petrolei Sinica, 2015, 36(6): 707~714. (in Chinese with English abstract)
    [12] Schoenberg M, Muir F, Sayers C. Introducing ANNIE: A simple three-parameter anisotropic velocity model for shales[J]. Journal of Seismic Exploration, 1996, 5(1): 35~50.
    [13] Suarez-Rivera R, Bratton T R. Estimating horizontal stress from three-dimensional anisotropy: US, 8175807[P]. 2009~01~30.
    [14] Quirein J, Eid M, Cheng A. Predicting the stiffness tensor of a transversely isotropic medium when the vertical Poisson‘s ratio is less than the horrizontal Poisson’s ratio[A]. SPWLA 55th Annual Logging Symposium[C]. Abu Dhabi: Society of Petrophysicists and Well-Log Analysts, 2014.
    [15] Murphy E, Barraza S R, Gu M, et al. New models for acoustic anisotropic interpretation in Shale[A]. SPWLA 56th Annual Logging Symposium[C]. Long Beach: Society of Petrophysicists and Well-Log Analysts, 2015.
    [16] Suarez-Rivera R, Handwerger D, Kieschnick J, et al. Accounting for heterogeneity provides a new perspective for completions in tight gas shales[A]. Proceedings of The 40th U.S. Symposium on Rock Mechanics[C]. Anchorage, Alaska: American Rock Mechanics Association, 2005.
    [17] Gautam R. Anisotropy in deformation and hydraulic properties of Colorado shale[D]. Calgary: University of Calgary, 2004.
    [18] Nye J F. Physical properties of crystals[M]. Oxford: Oxford University Press, 1985.
    [19] Hornby B E, Howie J M, Ince D W. Anisotropy correction for deviated-well sonic logs: Application to seismic well tie[J]. Geophysics, 2003, 68(2): 464~471.
    [20] Sarout J, Molez L, Guéguen Y, et al. Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8~14): 896~906.
    [21] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954~1966.
    [22] Thiercelin M J, Plumb R A. A Core-based prediction of lithologic stress contrasts in east Texas formations[J]. SPE Formation Evaluation, 1994, 9(4): 251~258.
    [23] 邓金根, 陈峥嵘, 耿亚楠, 等. 页岩储层地应力预测模型的建立和求解[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 59~64.DENG Jingen, CHEN Zhengrong, GENG Yanan, et al. Prediction model for in-situ formation stress in shale reservoirs[J]. Journal of China University of Petroleum, 2013, 37(6): 59~64. (in Chinese with English abstract)
    [24] Eaton B A. The equation for geopressure prediction from well logs[A]. Fall Meeting of the Society of Petroleum Engineers of AIME[C]. Dallas, Texas: SPE, 1975.
    [25] Frydman M. Determinations of the dynamic elastic constants of a transverse isotropic rock based on borehole dipole sonic anisotropy in deviated wells[R]. Proceedings of the Biennial 15th Rio Oil & Gas Expo and Conference[C]. Rio Oil and Gas Expo and Conference, IBP2304_10, 2010.
    [26] 邓继新, 王欢, 周浩, 等. 龙马溪组页岩微观结构、地震岩石物理特征与建模[J]. 地球物理学报, 2015, 58(6): 2123~2136.DENG Jixin, WANG Huan, ZHOU Hao, et al. Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale[J]. Chinese Journal of Geophysics, 2015, 58(6): 2123~2136. (in Chinese with English abstract)
    [27] Deng J X, Shen H, Xu Z H, et al. Dynamic elastic properties of the Wufeng-Longmaxi formation shale in the southeast margin of the Sichuan Basin[J]. Journal of Geophysics and Engineering, 2014, 11(3): 035004.
    [28] Wang Z J. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data[J]. Geophysics, 2002, 67(5): 1423~1440.
    [29] Sondergeld C H, Rai C S, Whidden R W. Ultrasonic measurement of anisotropy on the Kimmeridge Shale[A]. 2000 SEG Annual Meeting. Calgary, Alberta: SEG, 2000.
    [30] Tsuneyama F, Mavko G. Velocity anisotropy estimation for brine-saturated sandstone and shale[J]. The Leading Edge, 2005, 24(9): 882~888.
    [31] 李金磊. 涪陵焦石坝页岩气层压力预测技术研究[J]. 石油物探, 2017, 56(4): 567~574.LI Jinlei. Pressure prediction of Jiaoshiba shale gas reservoir in the Fuling Shale Gasfield[J]. Geophysical Prospecting for Petroleum, 2017, 56(4): 567~574. (in Chinese with English abstract)
    [32] 陈亚琳, 郁飞, 罗兵, 等. 四川盆地涪陵地区页岩储层压力预测及高压形成机制分析[J]. 石油实验地质, 2018, 40(1): 110~117.CHEN Yalin, YU Fei, LUO Bing, et al. Formation pressure prediction and high pressure formation mechanisms of shale reservoirs in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 110~117. (in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700