Magnus圆柱叶轮的水动力学特性及效率研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on hydrodynamic characteristic and efficiency of the Magnus cylindrical blade impeller
  • 作者:程友良 ; 刘鑫 ; 汪辉
  • 英文作者:CHENG You-liang;LIU Xin;WANG Hui;School of Energy Power and Mechanical Engineering,North China Electric Power University;
  • 关键词:Magnus圆柱叶轮 ; 海流涡轮机 ; 水动力学特性 ; 数值模拟 ; 获能效率
  • 英文关键词:Magnus cylindrical blade impeller;;marine current turbine;;hydrodynamic characteristic;;numerical simulation;;energy harvesting efficiency
  • 中文刊名:SDLJ
  • 英文刊名:Chinese Journal of Hydrodynamics
  • 机构:华北电力大学能源动力与机械工程学院;
  • 出版日期:2019-05-30
  • 出版单位:水动力学研究与进展(A辑)
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(11232012)~~
  • 语种:中文;
  • 页:SDLJ201903012
  • 页数:6
  • CN:03
  • ISSN:31-1399/TK
  • 分类号:91-96
摘要
我国海流能资源储量丰富,其中低流速海况的能量有极大的开发价值。Magnus圆柱叶轮可以产生较大的转动力矩且充分利用来流能量,以在低流速海流条件下发电,该文对Magnus圆柱叶轮的水动力学特性及效率进行研究。首先,利用PRO/E软件为平台对Magnus圆柱叶轮进行建模,使用Ansys中的MRF方法对模型中的旋转域进行计算;其次,对其受力情况和获能情况进行分析,得到Magnus叶轮的水动力学特性及效率。研究表明:相较于传统叶片,Magnus圆柱叶轮有更好的启动性能,圆柱自转会减小叶顶能量损失。该文为Magnus圆柱叶轮海流涡轮机的工程应用提供了一定的参考价值。
        China is rich in ocean current energy resources and the low-flow sea conditions have great development value.The Magnus cylinder impeller can generate large rotational torque, make full use of flow energy, and can generate electricity under low flow currents. Therefore, the hydrodynamic characteristics and efficiency of Magnus cylinder impeller are studied in this paper. First, magnus cylindrical blade impeller is established based on the platform of PRO/E software. The MRF method in Ansys is used to compute the rotation sub-fields. Then the magnus cylindrical impeller is water hydrodynamic characteristics and efficiency are obtained by comparing with ordinary airfoil impeller through simulating and analyzing. Studies have shown that Magnus cylinder impellers have better startup performance compared to conventional blades, and that cylinder rotation reduces tip energy losses. This paper provides a certain reference for the magnus cylindrical blade impeller turbine engineering application.
引文
[1]HENRY J,BRIGHID J,MARK W.Accelerating the development of marine energy:Exploring the prospects,benefits and challenges[J].Technological Forecasting&Social Change,2013,80(7):1306-1316.
    [2]OMAR E,HAITHAM A R,FREDE B.Renewable energy resources:current status,future prospects and their enabling technology[J].Renewable and Sustainable Energy Reviews,2014,39:748-764.
    [3]史丹,刘佳骏.我国海洋能源开发现状与政策建议[J].中国能源,2013,35(09):6-11.SHI Dan,LIU Jia-jun.China's marine energy development status and policy recommendations[J].China Energy,2013,35(09):6-11.
    [4]BENO?T G,PETER D,ALBERT D,et al.Flume tank characterization of marine current turbine blade behaviour under current and wave loading[J].Renewable Energy,2013,59:1-12.
    [5]PEDRO R,MARSHALL C R.Simulating blade-strike on fish passing through marine hydro kinetic turbines[J].Renewable Energy,2014,71:401-413.
    [6]张亮,房良,张学伟.水平轴潮流能水轮机空化特性研究[J].华中科技大学学报:自然科学版,2015,43(2):50-54.ZHANG Liang,FANG Liang,ZHANG Xue-wei.Study on cavitation characteristics of horizontal axis tidal energy turbine[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2015,43(2):50-54.
    [7]何煜平.水平轴海流机叶片与漂浮式支撑的设计与研究[D].上海,中国:上海交通大学,2013.HE Yu-ping.Design and research of horizontal axle flow blade and floating support[D],Shanghai,China:Shanghai Jiaotong University,2013.
    [8]王立,董志勇,韩伟,等.海流能转换器叶片翼型的失速和水动力特性的数值研究[J].水动力学研究与进展A辑,2011,26(1):58-64.WANG Li,DONG Zhi-yong,HAN Wei,et al.Numerical study on stall and hydrodynamic characteristics of airfoil converter blade airfoil[J].Chinese journal of hydrodynamics,2011,26(1):58-64.
    [9]程友良,赵洪嵩,汪辉.一种利用马格努斯圆柱驱动器的海流能发电装置[P].105756844A,2016-07-13,中国.CHENG You-liang,ZHAO Hong-song,WANG Hui.Acurrent energy generating device using a Magnus cylindrical drive[P].105756844A,2016-07-13,China.
    [10]朱弘.基于马格努斯效应的风力机叶片流场的数值模拟[D].哈尔滨,中国:哈尔滨工业大学,2010.ZHU Hong.Numerical simulation of flow field of wind turbine blade based on magnus effect[D].Harbin,China:Harbin Institute of Technology,2010.
    [11]RELF E F,LAVENDER T.Experiments on the flow behind a rotating cylinder in the water channel[R].London:Aeronautical Research Committee,1925.
    [12]MITTAL S,KUMAR B.Flow past a rotating cylinder[J].Journal of Fluid Mechanics,2003,476:303-334.
    [13]何颖,杨新民,陈志华,等.旋转圆柱绕流的流场特性[J].船舶力学,2015,19(5):501-508.HE Ying,YANG Xin-min,CHEN Zhi-hua,et al.Flow field characteristics of a rotating cylinder[J].Ship Mechanics,2015,19(5):501-508.
    [14]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京,中国:清华大学出版社,2004.WANG Fu-jun.Computational fluid dynamics analysis:Principles and applications of CFD software[M].Beijing,China:Tsinghua University Press,2004.
    [15]詹昊,李万平,方秦汉,等.不同雷诺数下圆柱绕流仿真计算[J].武汉理工大学学报,2008,30(12):129-132.ZHAN Hao,LI Wan-ping,FANG Qin-han,et al.Simulation calculation of flow around a cylinder with different Reynolds numbers[J].Journal of Wuhan University of Technology,2008,30(12):129-132.
    [16]赫鹏,李国栋,杨兰,等.圆柱绕流流场结构的大涡模拟研究[J].应用力学学报,2012,29(4):437-443.HE Peng,LI Guo-dong,YANG Lan,et al.Large eddy simulation of flow field structure around a circular cylinder[J].Journal of Applied Mechanics,2012,29(4):437-443.
    [17]CARL M B,STEVEN A O.Boundary-layer Theory[M].New York:Mcgraw-hill Book Company,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700