沉井下沉侧壁摩阻力离心模型试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Side-wall Frictional Resistance During Open Caisson Sinking by Centrifugal Model Test
  • 作者:张凯 ; 马建林 ; 周和祥 ; 罗朝洋 ; 褚晶磊
  • 英文作者:ZHANG Kai;MA Jianlin;ZHOU Hexiang;LUO Chaoyang;CHU Jinglei;School of Civil Engineering,Southwest Jiaotong University;
  • 关键词:公铁两用桥梁 ; 侧壁摩阻力 ; 模型试验 ; 沉井 ; 分布规律 ; 计算模型
  • 英文关键词:Rail-cum-road bridge;;Side-wall friction resistance;;Model test;;Open caisson;;Distribution rule;;Calculation model
  • 中文刊名:TDJZ
  • 英文刊名:Railway Engineering
  • 机构:西南交通大学土木工程学院;
  • 出版日期:2019-06-20
  • 出版单位:铁道建筑
  • 年:2019
  • 期:v.59;No.544
  • 基金:国家重点研发计划(2016YFC0802203-1);; 中国铁路总公司科技研究开发计划(2013G001-A-2)
  • 语种:中文;
  • 页:TDJZ201906008
  • 页数:5
  • CN:06
  • ISSN:11-2027/U
  • 分类号:33-37
摘要
沉井下沉过程中侧壁摩阻力的大小及分布是影响沉井能否顺利下沉的因素之一,为了更好地研究其特性,以沪通长江大桥主墩沉井基础为研究对象,基于离心模型试验对4组不同埋深情况下沉井下沉过程进行研究。结果表明:在一定的下沉深度范围内,沉井侧壁摩阻力随下沉深度的增加呈先增大后减小的趋势,且当入土深度为2/3倍沉井埋深时,沉井侧壁摩阻力达到极大值。在此基础上以分段函数的形式建立了沉井下沉侧壁摩阻力的计算模型,所得结论可为类似工程提供参考。
        The size and distribution of side-wall frictional resistance during open caisson sinking is one of the factors that affect the successful sinking of open caisson. To better study its characteristics,the open caisson foundation of the main pier of Shanghai-Nantong Yangtze River Bridge was taken as the research object.Based on centrifugal model test,study on the sinking process of open caisson in 4 different buried depths was carried out. The results show that in a certain range of sinking depth,the side-wall frictional resistance of open caisson increases f irst and then decreases with the increase of sinking depth,and when the sinking depth is 2/3 times the buried depth of open caisson,the side-wall frictional resistance of open caisson reaches extreme value. On this basis,a calculation model of side-wall frictional resistance during open caisson sinking was established in the form of a piecewise function.The conclusions obtained can be used as a reference for similar projects.
引文
[1]ZHANG Y K,GAO Y F,LI D Y,et al.H-M Bearing Capacity of a Modified Suction Caisson Determined by Using LoadDisplacement-Controlled Methods[J].China Ocean Engineering,2016,30(6):926-941.
    [2]ZHU B,ZHANG W L,YING P P,et al.Deflection-Based Bearing Capacity of Suction Caisson Foundations of Offshore Wind Turbines[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):1-2.
    [3]XU F,PI X J,FENG S L,et al.Research on the Uplift Bearing Capacity of Suction Caisson Foundation Under Local Tensile Failure[C]//2nd International Symposium on Submerged Floating Tunnels and Underwater Tunnel Structures.Chongqing:Procedia Engineering,2016.
    [4]中国工程建设协会.给排水工程钢筋混凝土沉井结构设计规程:CECS 137:2015[S].北京:中国计划出版社,2015.
    [5]梁穑稼,徐伟,徐赞云.沉井下沉时土压力和侧壁摩阻力分析[J].同济大学学报(自然科学版),2014,42(12):1826-1832.
    [6]陈晓平,茜平一,张志勇.沉井基础下沉阻力分布特征研究[J].岩土工程学报,2005,27(2):148-152.
    [7]王建,刘杨,张煜.沉井侧壁摩阻力室内试验研究[J].岩土力学,2013,34(3):659-666.
    [8]高宗余.沪通长江大桥主桥技术特点[J].桥梁建设,2014,44(6):1-5.
    [9]高宗余,梅新咏,徐伟,等.沪通长江大桥总体设计[J].桥梁建设,2015,45(6):1-6.
    [10]王年香,章为民.土工离心机模型试验技术与应用[M].北京:中国建筑工业出版社,2015.
    [11]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    [12]ZHANG L,GOH S H,LIU H B.Seismic Response of Pile-raftclay System Subjected to a Long-duration Earthquake:Centrifuge Test and Finite Element Analysis[J].Soil Dynamics and Earthquake Engineering,2017,92(1):448-502.
    [13]HE B,WANG L Z,HONG Y.Capacity and Failure Mechanism of Laterally Loaded Jet-grouting Reinforced Piles:Field and Numerical Investigation[J].Science China(Technological Sciences),2016,59(5):763-776.
    [14]石聪.砂土中沉井侧壁摩阻力离心机试验研究[D].成都:西南交通大学,2015.
    [15]胡中波,马建林,徐力,等.沉井基础竖向承载特性的离心模型试验研究[J].铁道标准设计,2016,60(12):80-84.
    [16]穆保岗,王岩,朱建民,等.大型沉井实测下沉阻力分析[J].土木建筑与环境工程,2012,34(增1):107-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700