用户名: 密码: 验证码:
砾质辫状河型冲积扇岩相类型、成因及分布规律——以准噶尔盆地西北缘现代白杨河冲积扇为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Lithofacies Types,Cause Mechanisms and Distribution of a Gravel Braided-River Alluvial Fan: A case study of the modern Poplar River alluvial fan,northwestern Junggar Basin
  • 作者:靳军 ; 刘大卫 ; 纪友亮 ; 杨召 ; 高崇龙 ; 王剑 ; 段小兵 ; 桓芝俊 ; 罗妮娜
  • 英文作者:JIN Jun;LIU Da Wei;JI YouLiang;YANG Zhao;GAO ChongLong;WANG Jian;DUAN XiaoBing;HUAN ZhiJun;LUO NiNa;College of Geosciences,China University of Petroleum(Beijing);PetroChina Xinjiang Oilfield Company,Research Institute of Experiment and Detection;Institute of Geology and Geophysics,Chinese Academy of Sciences;
  • 关键词:辫状河型冲积扇 ; 岩相类型 ; 粒度特征 ; 岩相分布 ; 支撑砾岩
  • 英文关键词:braided-river alluvial fan;;lithofacies types;;granularity characteristic;;lithofacies distribution;;open-framework conglomerate
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:中国石油大学(北京)地球科学学院;中国石油新疆油田分公司实验检测研究院;中国科学院地质与地球物理研究所;
  • 出版日期:2018-11-13 17:04
  • 出版单位:沉积学报
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(41672098,41602133)~~
  • 语种:中文;
  • 页:CJXB201902003
  • 页数:14
  • CN:02
  • ISSN:62-1038/P
  • 分类号:33-46
摘要
冲积扇砂砾岩储层是准噶尔盆地一类重要的油气储层类型,由于其具岩相类型多、连续性差等特点,对冲积扇内部岩相成因解释一直是冲积扇相带认知的基础和难点。以准噶尔盆地西北缘现代白杨河冲积扇为例,在大量的野外露头资料和粒度分析数据的基础上,结合冲积扇源区母岩类型、水文资料以及冲积扇文献资料,对现代白杨河冲积扇岩相的类型、成因及分布规律进行探讨。按沉积机制,白杨河冲积扇属于辫状河型冲积扇,具有规模大(扇体总面积约327.6 km~2),坡度平缓(约1‰~7‰),沉积粒度粗等特征。在白杨河冲积扇内共可识别出16种岩相类型,并根据岩相形成的流体动力差异划归为5类成因,即重力流成因、高流态牵引流成因、低流态牵引流成因、静水沉积成因以及风成沉积成因。重力流以洪流沉积为主;高流态牵引流主要包括片流沉积和湍流沉积;低流态牵引流以砂(砾)质河道沉积为主;静水沉积以蓄水细粒沉积为主;风成沉积以风携细粒沉积为主。根据各岩相沉积构造、粒度特征及展布规模,可将岩相划分为四类:Ⅰ类岩相沉积构造特征明显并具有较大展布规模;Ⅱ类岩相沉积构造特征明显但展布规模局限;Ⅲ类岩相为不具层理构造但具有较大展布规模的岩相;Ⅳ类岩相不具层理构造并且展布规模局限。其中Ⅰ类和Ⅱ类岩相多为牵引流成因,多发育于洪水期扇体扇中、扇缘区域以及间洪期扇体的扇中区域,并可在地下继承性发育为较好的储集相带。
        Conglomerate reservoirs in alluvial fans are an important oil and gas reservoir type in the Junggar Basin. However, alluvial fan glutinite reservoirs consist of several lithofacies and poor continuity, which causes the lithofacies interpretation of the alluvial fan facies to be a fundamental and difficult research area. As an example, the lithofacies mechanism and distribution of the modern Poplar River alluvial fan at the northwestern margin of the Junggar Basin is discussed on the basis of a large amount of outcrop data, source rocks, hydrological data and alluvial fan studies reported in the literature. According to the deposition mechanism, the Poplar River alluvial fan is a braided-river alluvial fan with features typical of its large scale(fan total area is 327.6 km~2), gentle slope(about 4‰-7‰), and rough sediments. Sixteen lithofacies were recognized; their hydrodynamic differences indicate that they may be classified into five causes: debris flow, high-flow traction current, low-flow traction current, hydrostatic deposition, and aeolian deposition. Debris flow is mainly composed of flood deposits; high-flow traction current mainly includes sheet-flood deposits and turbulent deposits; low-flow traction current is mainly composed of(gravelly) sand channel sediments; hydrostatic deposits are dominated by fine material, and aeolian deposits mainly consist of wind-transported sediments. The lithofacies are divided into four types according to sedimentary structure, granularity and distribution scale. The first type has an obvious sedimentary structure and wide distribution. The second type has obvious sedimentary structural characteristics but limited distribution. The third type, which is present on a large scale, has characteristics in which the sedimentary structures are not apparent. The sedimentary structure and physical properties of the fourth type are also not apparent, and occur only on a limited scale. The first and second types of lithofacies are mainly caused by traction currents that mainly form in the middle and distal parts of the flood period, and in the middle part of the inter-flood stage; those lithofacies form higher-quality reservoirs underground in due course.
引文
[1] Moore J M, Howard A D. Large alluvial fans on Mars[J]. Journal of Geophysical Research, 2005, 110(E4): 1-24.
    [2] 张春生. 冲积体系及三角洲物理模拟研究[D]. 四川:成都理工学院,2001. [Zhang Chunsheng. Physical simulation and relevant studies of the alluvial system and deltas[D]. Sichuan: Chengdu University of Technology, 2001.]
    [3] Clarke L E. Experimental alluvial fans: advances in understanding of fan dynamics and processes[J]. Geomorphology, 2015, 244: 135-145.
    [4] 张纪易. 粗碎屑洪积扇的某些沉积特征和微相划分[J]. 沉积学报,1985,3(3):75-85. [Zhang Jiyi. Some depositional characteristics and microfacies subdivision of coarse clastic alluvial fans[J]. Acta Sedimentologica Sinica, 1985, 3(3): 75-85.]
    [5] 郑占,吴胜和,许长福,等. 克拉玛依油田六区克下组冲积扇岩石相及储层质量差异[J]. 石油与天然气地质,2010,31(4):463-471. [Zheng Zhan, Wu Shenhe, Xu Changfu, et al. Lithofacies and reservoirs of allluvial fan in the lower Keramay Formation in the block-6 of Karamay oilfield, the Junggar Basin[J]. Oil & Gas Geology, 2010, 31(4): 463-471.]
    [6] 陈欢庆,舒治睿,林春燕,等. 粒度分析在砾岩储层沉积环境研究中的应用:以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 西安石油大学学报(自然科学版),2014,29(6):6-12,34. [Chen Huanqing, Shu Zhirui, Lin Chunyan, et al. Application of grain-size analysis in research of sedimentary environment of conglomerate reservoir: Taking alluvial fan reservoir in the lower member of Kelamayi Formation in some area of the northwestern margin of Zhunger Basin as an example[J]. Journal of Xi'an University (Natural Science Edition), 2014, 29(6): 6-12, 34.]
    [7] 吴胜和,范铮,许长福,等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J]. 古地理学报,2012,14(3):331-340. [Wu Shenghe, Fan Zheng, Xu Changfu, et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay oilfield, Xinjiang[J]. Journal of Palaeogeograohy, 2012, 14(3): 331-340.]
    [8] 王晓光,贺陆明,吕建荣,等. 克拉玛依油田冲积扇构型及剩余油控制模式[J]. 断块油气田,2012,19(4):493-496. [Wang Xiaoguang, He Luming, Lü Jianrong, et al. Configuration of alluvial fan and control mode on remaining oil in Karamay oilfield[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 493-496.]
    [9] 伊振林,吴胜和,杜庆龙,等. 冲积扇储层构型精细解剖方法:以克拉玛依油田六中区下克拉玛依组为例[J]. 吉林大学学报(地球科学版),2010,40(4):939-946. [Yi Zhenlin, Wu Shenghe, Du Qinglong, et al. An accurate anatomizing method for structure of reservoir of alluvial fan: A case study on lower Karamay Formation, Liuzhong area, Karamay oilfield[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(4): 939-946.]
    [10] 包兴. 冲积扇构型建模方法研究[D]. 武汉:长江大学,2012. [Bao Xing. A research on alluvial fan architecture modeling method. Wuhan: Yangtze University, 2012]
    [11] 陈欢庆,梁淑贤,舒治睿,等. 冲积扇砾岩储层构型特征及其对储层开发的控制作用:以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 吉林大学学报(地球科学版),2015,45(1):13-24. [Chen Huanqing, Liang Shuxian, Shu Zhirui, et al. Characteristics of conglomerate reservoir architecture of alluvial fan and its controlling effects to reservoir development: Taking alluvial fan reservoir in some area of northwest margin of Junggar Basin as an example[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 13-24]
    [12] 印森林,胡张明,郑丽君,等. 第四纪昌平冲积扇沉积特征研究[J]. 中国科技论文,2015,10(15):1828-1833. [Yin Senlin, Hu Zhangming, Zheng Lijun, et al. Sedimentary features of the Quaternary Changping alluvial fan[J]. China Sciencepaper, 2015, 10(15): 1828-1833.]
    [13] 冯文杰,吴胜和,徐长福,等. 冲积扇储层窜流通道及其控制的剩余油分布模式:以克拉玛依油田一中区下克拉玛依组为例[J]. 石油学报,2015,36(7):859-870. [Feng Wenjie, Wu Shenghe, Xu Changfu, et al. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Acta Petrolei Sinica, 2015, 36(7): 859-870.]
    [14] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22. [Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.]
    [15] 吴胜和,冯文杰,印森林,等. 冲积扇沉积构型研究进展[J]. 古地理学报,2016,18(4):497-512. [Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture[J]. Journal of Palaeogeography, 2016, 18(4): 497-512.]
    [16] 冯文杰,吴胜和,夏钦禹,等. 基于地质矢量信息的冲积扇储层沉积微相建模:以克拉玛依油田三叠系克下组为例[J]. 高校地质学报,2015,21(3):449-460. [Feng Wenjie, Wu Shenhe, Xia Qinyu, et al. Micro-facies modeling of alluvial fan reservoir based on geological vector information: A case study on the Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Geological Journal of China Universities, 2015, 21(3): 449-460.]
    [17] Yin S L, Wu S H, Feng W J, et al. Patterns of intercalation in alluvial fan reservoirs: A case study of Lower Karamay Formation, Yizhong Area, Karamay Oilfield, NW China[J]. Petroleum Exploration and Development, 2013, 40(6): 811-818.
    [18] Fidolini F, Ghinassi M, Aldinucci M, et al. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: an example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)[J]. Sedimentary Geology, 2013, 289: 19-39.
    [19] DeCelles P G, Gray M B, Ridgway K D, et al. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana[J]. Sedimentology, 1991, 38(4): 567-590.
    [20] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:248-256. [Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 248-256.]
    [21] Waters J V, Jones S J, Armstrong H A. Climatic controls on late Pleistocene alluvial fans, Cypru[J]. Geomorphology, 2010, 115(3/4): 228-251.
    [22] Fernandez J, Bluck B J, Viseras C. The effects of fluctuating base level on the structure of alluvial fan and associated fan delta deposits: An example from the Tertiary of the Betic Cordillera, Spain[J]. Sedimentology, 1993, 40(5): 879-893.
    [23] Calvo R, Ramos E. Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain)[J]. Geosphere, 2015, 11(5): 1507-1529.
    [24] Carnicelli S, Benvenuti M, Andreucci S, et al, Late Pleistocene relic Ultisols and Alfisols in an alluvial fan complex in coastal Tuscany[J]. Quaternary International, 2015, 376: 163-172.
    [25] Blair T C. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California[J]. Sedimentology, 1999, 46(5): 941-965.
    [26] Kim B C, Lowe D R. Depositional processes of the gravelly debris flow deposits, South Dolomite alluvial fan, Owens Valley, California[J]. Geosciences Journal, 2004, 8(2): 153-170.
    [27] Haas T, Braat L, Leuven J R F W, et al. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1949-1972.
    [28] Harvey A M. The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada[J]. Geomorphology, 2002, 45(1/2): 67-87.
    [29] Cuevas Martínez J L, Pérez L C, Marcuello A, et al. Exhumed channel sandstone networks within fluvial fan deposits from the Oligo-Miocene Caspe Formation, South-east Ebro Basin (North-east Spain)[J]. Sedimentology, 2010, 57(1): 162-189.
    [30] Stanistreet I G, McCarthy T S. The Okavango Fan and the classification of subaerial fan systems[J]. Sedimentary Geology, 1993, 85(1/2/3/4): 115-133.
    [31] Ridgway K D, Decelles P G. Stream-dominated alluvial fan and lacustrine depositional systems in Cenozoic strike-slip basins, Denali fault system, Yukon Territory, Canada[J]. Sedimentology, 1993, 40(4): 645-666.
    [32] Allen P A. Sediments and processes on a small stream-flow dominated, devonian alluvial fan, shetland islands[J]. Sedimentary Geology, 1981, 29(1): 31-37, 48-66.
    [33] de Haas T, Ventra D, Carbonneau P E, et al. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering[J]. Geomorphology, 2014, 217: 165-181.
    [34] de Haas T, Kleinhans M G, Carbonneau P E, et al. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: controls and processes[J]. Earth-Science Reviews, 2015, 146: 163-182.
    [35] Blair T C. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California[J]. Sedimentology, 1999, 46(5): 913-940.
    [36] 胡杨,夏斌,郭峰,等. 新疆和什托洛盖盆地构造演化特征及其对油气成藏的影响[J]. 地质与资源,2012,21(4):380-385. [Hu Yang, Xia Bin, Guo Feng, et al. Tectonic evolution and its influence on hydrocarbon accumulation of Heshituoluogai Basin in northwest Xinjiang[J]. Geology and Resources, 2012, 21(4): 380-385.]
    [37] 胡杨,郭峰,刘见宝,等. 和什托洛盖盆地构造演化及油气成藏条件[J]. 西南石油大学学报(自然科学版),2011,33(5):68-74. [Hu Yang, Guo Feng, Liu Jianbao, et al. Analysis of tectonic evolution and oil-gas reservoir formation condition of Heshituoluogai Basin in northwest Xinjiang[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(5): 68-74.]
    [38] 吕辉河. 新疆西准噶尔白杨河流域地貌特征及演化分析[D]. 济南:鲁东大学,2013. [Lü Huihe. Analysis of geomorphic features and evolution of Baiyanghe River in West Junggar, Xinjiang, China[D]. Ji'nan: Ludong University, 2013.]
    [39] Miall A D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
    [40] Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: a mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
    [41] Nemec W, Steel R J. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits[M]//Koster E H, Steel R J. Sedimentology of Gravels and Conglomerates. Canadian: Canadian Society of Petroleum Geologists, 1984: 1-31.
    [42] Franke D J, Hornung J, Hinderer M. A combined study of radar facies, lithofacies and three-dimensional architecture of an alpine alluvial fan (Illgraben fan, Switzerland)[J]. Sedimentology, 2015, 62(1): 57-86.
    [43] Boothroyd J C, Ashley G M. Processes, bar morphology, and sedimentary structures on braided outwash fans, Northeastern Gulf of Alaska[M]//Jopling A V, McDonald B C. Glaciofluvial and Glaciolacustrine Sedimentation. Tulsa, Okla: Society of Economic Paleontologists and Mineralogists, 1975: 193-222.
    [44] Hein F J, Walker R G. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia[J]. Canadian Journal of Earth Sciences, 1977, 14(4): 562-570.
    [45] Todd S P. Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin[J]. Sedimentology, 1989, 36(4): 513-530.
    [46] Tunbridge I P. Facies model for a sandy ephemeral stream and clay playa complex: the Middle Devonian Trentishoe Formation of North Devon, U.K.[J]. Sedimentology, 1984, 31(5): 697-715.
    [47] Al?i?ek H, Jiménez-Moreno G. Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin (SW Anatolia, Turkey): depositional, paleogeographic and paleoclimatic implications[J]. Sedimentary Geology, 2013, 291: 62-83.
    [48] McCarthy T S, Cadle A B, Blair T C, et al. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages; discussion and reply[J]. Journal of Sedimentary Research, 1995, 65(3): 581-586.
    [49] Blair T C. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California[J]. Sedimentary Geology, 2000, 132(3/4): 233-262.
    [50] Miall A D. The geology of fluvial deposits[M]. Berlin: Springer, 1996: 582-583.
    [51] Shukla U K. Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India[J]. International Journal of Earth Sciences, 2009, 98(2): 443-459.
    [52] Shukla U K, Singh I B, Sharma M, et al. A model of alluvial megafan sedimentation: Ganga Megafan[J]. Sedimentary Geology, 2001, 144(3/4): 243-262.Research on Lithofacies Types, Cause Mechanisms and Distribution of a Gravel Braided-River Alluvial Fan: A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700