基于微分平坦理论的直流电机控制系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of DC motor control system based on differential flatness theory
  • 作者:于仲安 ; 张峻铭 ; 王先敏
  • 英文作者:YU Zhongan;ZHANG Junming;WANG Xianmin;School of Electrical Engineering and Automation, Jiangxi University of Science and Technology;
  • 关键词:微分平坦控制 ; 直流电机 ; 轨迹预测 ; PI控制
  • 英文关键词:differential flatness theory;;DC motor;;trajectory prediction;;PI control
  • 中文刊名:NFYX
  • 英文刊名:Journal of Jiangxi University of Science and Technology
  • 机构:江西理工大学电气工程与自动化学院;
  • 出版日期:2019-06-15
  • 出版单位:江西理工大学学报
  • 年:2019
  • 期:v.40;No.199
  • 基金:江西省教育厅立项课题(GJJ150678)
  • 语种:中文;
  • 页:NFYX201903011
  • 页数:5
  • CN:03
  • ISSN:36-1289/TF
  • 分类号:71-75
摘要
在直流电机控制优化的研究中,根据直流电机有强非线性的特点,将微分平坦理论运用到直流电机控制系统中,能有效提高直流电机的响应速度和动态性能.首先介绍微分平坦理论和微分平坦控制的架构,证明直流电机的微分平坦性;然后根据直流电机状态方程,设计出直流电机的微分平坦控制系统,由系统期望输出量在空间规划状态变量的前馈控制量,通过PI控制产生的误差反馈量消除扰动误差.在Matlab/Simulink软件上建立的直流电机模型,进行仿真.结果表明,所设计的直流电机控制系统提高直流电机的响应速度,提高其动态性能,同时降低传统PID控制产生的超调问题.
        The research designed to optimize DC(Direct Current) motor control found that a DC motor control system based on differential flatness theory could improve the respond speed and dynamic performance of the motor with strong nonlinearity. Firstly, differential flatness theory and control architecture of differential flatness were introduced, and differential flatness of the DC motor was proved. Then, according to the DC motor state equation, the DC control system based on differential flatness theory was designed. According to the system's expected out-put, the state variable of feedforward control was planned in the space, and the error feedback was produced by PI(Proportional Integral) controller. The DC motor model established on Matlab/Simulink software was simulated. The results show that the designed DC motor control system improved the response speed of the DC motor, as well as its dynamic performance, and reduced the overshoot caused by conventional PID control.
引文
[1] Abdelhak B, Bachir B. A High gain observer based sensorless nonlinear control of induction machine[J]. International Journal of Power Electronics and Drive Systems, 2015, 5(3):305-314.
    [2]刘细平,章超,陈栋,等.机械变磁通永磁同步电机发展综述[J].江西理工大学学报,2014,35(3):37-46.
    [3]刘慧博,王静,吴彦合.无刷直流电机模糊自适应PID控制研究与仿真[J].控制工程,2014,21(4):583-587.
    [4]刘海波,杨战旗,艾永乐.基于微粒群优化算法的直流电机控制系统研究[J].现代电子技术, 2018,41(8):121-124.
    [5]杨日容.基于ARM和Modbus协议的三自由度直流电机控制系统设计[J].制造业自动化,2015,37(20):98-101.
    [6]曹凤金,杨盛,向艳芳.矿山运输电机车动力电机负载性能试验系统研究[J].矿业研究与开发,2017(9):97-100.
    [7]曹兰,王祖麟,刘勤崧.基于PIC18F4431单片机的变频调速控制系统设计[J].江西理工大学学报,2008,29(6):29-32.
    [8] Y azdanpanah R, Soltani J, Markadeh G R A. Nonlinear torque and stator flux controller for induction motor drive based on adaptive input-output feedback linearization and sliding mode control[J]. Energy Conversion and Management, 2008, 49(4):541-550.
    [9]李艳玲.永磁同步电机滑模无传感器矢量控制简[J].控制工程,2016,23(11):1763-1767.
    [10] Trabelsi R, Khedher A, Mimouni M F, et al. Backstepping control for an induction motor using an adaptive sliding rotor-flux observer[J]. Electric Power Systems Research, 2012, 93:1-15.
    [11] Fliess M, Lévine J, Martin P, et al. Flatness and defect of nonlinear systems:introductory theory and examples[J]. International Journal of Control, 1995, 61(6):1327-1361.
    [12] Agrawal S K, Pathak K, Franch J, et al. A differentially flat openchain space robot with arbitrarily oriented joint axes and two momentum wheels at the base[J]. IEEE Transactions on Automatic Control, 2009, 54(9):2185-2191.
    [13]蒲天骄,张昭,于汀,等.微分平坦理论及其在自动发电控制中的应用[J].电力系统及其自动化学报,2014,26(12):21-27.
    [14]谢传林,王发良,许小龙,等.基于微分平坦理论的PMSM电流环控制器设计[J].微特电机,2017,45(10):28-30.
    [15]康凯.基于MATLAB的数字PID直流电机调速系统的实现[J].电脑知识与技术,2010,6(22):6372-6374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700