基于马尔可夫的地面控制井下安全阀可靠性评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Markov-based reliability assessment for surface controlled subsurface safety valve system
  • 作者:刘益维 ; 陈国明 ; 朱渊 ; 何睿 ; 沈孝鱼
  • 英文作者:LIU Yiwei;CHEN Guoming;ZHU Yuan;HE Rui;SHEN Xiaoyu;Center for Offshore Engineering and Safety Technology,China University of Petroleum;
  • 关键词:井下安全阀 ; 马尔可夫模型 ; 可靠性 ; 可修复系统
  • 英文关键词:subsurface safety valve;;Markov model;;reliability;;repairable system
  • 中文刊名:LDBK
  • 英文刊名:Journal of Safety Science and Technology
  • 机构:中国石油大学(华东)海洋油气装备与安全技术研究中心;
  • 出版日期:2019-01-30
  • 出版单位:中国安全生产科学技术
  • 年:2019
  • 期:v.15
  • 基金:国家重点研发计划项目(2017YFC0804500,2016YFC0304005)
  • 语种:中文;
  • 页:LDBK201901022
  • 页数:6
  • CN:01
  • ISSN:11-5335/TB
  • 分类号:141-146
摘要
为保障地面控制井下安全阀系统的安全运行,防止系统发生故障,建立了井下安全阀可修复系统的马尔可夫模型;针对系统设备构成复杂及共因故障等问题,基于β因子模型描述共因失效,同时将模型划分为3个独立模块,通过克罗内克积方法合并,评估系统可靠性;参照OREDA可靠性数据,定量求解井下安全阀系统可用度、可靠度以及稳态指标,研究模型中状态转移概率对系统稳态可用度的影响。研究结果表明:井下安全阀系统的可用度随时间增长而迅速到达稳态值;系统检修周期应小于2. 5 a;根据可靠性分析结果,运营方应考虑系统经济与可靠性间的博弈关系,合理优化系统冗余结构与维修周期管理,防止井下安全阀系统失效。
        To ensure the safe operation of surface controlled subsurface safety valve system and prevent the failure of the system,a Markov model for the repairable system of subsurface safety valve was established. Aiming at the problems of complex equipment composition and common cause failure of the system,the common cause failure was described based on the β-factor model,meanwhile,the model was divided into three independent modules,and the reliability of the system was evaluated by merging with the Kronecker product approach. The availability,reliability and steady-state indexes of the subsurface safety valve system were quantitatively calculated referring to the reliability data of OREDA,and the influence of state transition probability in the model on the steady-state availability of the system was studied. The results showed that the availability of the subsurface safety valve system rapidly reached the steady-state value with the increase of time. The overhaul cycle of the system should be less than 2. 5 years. According to the results of reliability analysis,the operators should consider the game relationship between the economy and reliability,and rationally optimize the redundancy structure and maintenance cycle to prevent the failure of the subsurface safety valve system.
引文
[1] CORNELIUSSEN K. Well safety risk control in the operational phase of offshore wells[D]. Trondheim:Norwegian University of Science and Technology,2006.
    [2] GARNER J,MARTIN K,MCCALVIN D,et al. At the ready:subsurface safety valves[J]. Oilfield review,2002:14(4):52-64,66.
    [3]周大伟.井下安全阀系统设计与分析[D].成都:西南石油大学,2007.
    [4]黎伟,宋伟,李乃禾,等.滑套式井下安全阀设计及动态特性分析[J].中国安全生产科学技术,2017,13(2):159-163.LI Wei,SONG Wei,LI Naihe,et al. The design and dynamic characteristic analysis of the slip-type subsurface safety valve[J]. Journal of Safety Science and Technology,2017,13(2):159-163.
    [5] RAUSAND M,JRN VATN. Reliability modeling of surface controlled subsurface safety valves[J]. Reliability Engineering&System Safety,2008,61(1–2):159-166.
    [6] KHAKZAD N,KHAN F,AMYOTTE P. Quantitative risk analysis of offshore drilling operations:ABayesian approach[J]. Safety Science,2013,57(57):108-117.
    [7] OLIVEIRA P G O,BRAGA A,GARCIA P A A. Reliability study of subsurface safety valve control system in oil wells[C]//ESSREL2016 26th European Safety and Reliability. Risk,Reliability and Safety:Innovating Theory and Practice,2017:801-808.
    [8] LIU Y,RAUSAND M. Reliability assessment of safety instrumented systems subject to different demand modes[J]. Journal of Loss Prevention in the Process Industries,2011,24(1):49-56.
    [9] CAI B,LIU Y,LIU Z,et al. Performance evaluation of subsea blowout preventer systems with common-cause failures[J]. Journal of Petroleum Science&Engineering,2012,90-91(4):18-25.
    [10] HIDALGO E M P,SILVA D W R,DE SOUZA G F M. Application of Markov Chain to determine the electric energy supply sysem reliability for the cargo control system of LNG carriers[C]//Amerian Society of Mechanical Engineers. ASME 2013 32nd International Confernce on Ocean,Offshore and Arctic Engineering,2013.
    [11] GOWID S,DIXON R,GHANI S. Optimization of reliability and maintenance of liquefaction system on FLNG terminals using Markov modelling[J]. International Journal of Quality&Reliability Management,2014,31(3):293-310.
    [12]白勇,龚顺风,白强,等.水下生产系统手册[M].哈尔滨:哈尔滨工程大学出版社,2012.
    [13] KIM S,CHUNG S,YANG Y. Availability analysis of subsea blowout preventer using Markov model considering demand rate[J]. International Journal of Naval Architecture&Ocean Engineering,2014,6(4):775-787.
    [14]金星,洪延姬.系统可靠性与可用性分析方法[M].北京:国防工业出版社,2007.
    [15]王玉玲.机械可靠性维修性优化设计方法及其在工程机械中的应用[D].山东:山东大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700