赣南221铀矿床黄铁矿微量元素与硫同位素地球化学特征及其对铀成矿作用的指示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of Trace Elements and Sulfur Isotopes of Pyrite from Uranium Deposit 221, South Jiangxi Province: Implication for Uranium Mineralization
  • 作者:吴德海 ; 潘家永 ; 夏菲 ; 牟平 ; 刘文泉 ; 黄广文 ; 赖静 ; 钟福军
  • 英文作者:WU De-hai;PAN Jia-yong;XIA Fei;MOU Ping;LIU Wen-quan;HUANG Guang-wen;LAI Jing;ZHONG Fu-jun;State Key Laboratary of Nuclear Resource and Environment,East China University of Technology;Guizhou Institute of Nuclear Resource Geology, Guizhou Nonferrous Metals and Nuclear Industry Geological Prospecting Bureau;Research Institute NO.290,CNNC;Qinghai Geological Survey Institute;
  • 关键词:微量元素 ; 硫同位素 ; 成矿流体 ; 黄铁矿 ; 221铀矿床
  • 英文关键词:trace elements;;sulfur isotope;;ore-forming fluid;;pyrite;;221 uranium deposit
  • 中文刊名:XTZZ
  • 英文刊名:Chinese Rare Earths
  • 机构:东华理工大学核资源与环境国家重点实验室;贵州省有色金属和核工业地质勘查局核资源地质调查院;核工业290研究所;青海省地质调查院;
  • 出版日期:2019-06-15
  • 出版单位:稀土
  • 年:2019
  • 期:v.40;No.242
  • 基金:国家重点研发计划项目(2017YFC0602600);; 国家自然科学基金项目(U1403292;41772066);; 江西省研究生创新专项基金项目(YC2018-B082)
  • 语种:中文;
  • 页:XTZZ201903003
  • 页数:16
  • CN:03
  • ISSN:15-1099/TF
  • 分类号:24-39
摘要
为了解决南岭中段黄沙矿区221铀矿床成矿流体性质、来源和成矿环境问题。以该矿床与矿石矿物(沥青铀矿、次生铀矿物等)和其他脉石矿物(微晶石英、方解石等)密切共生的黄铁矿为研究对象,在详细的野外和室内岩相学观察基础上,系统研究了该矿床矿石和蚀变辉绿岩中的黄铁矿稀土元素、微量元素以及硫同位素地球化学特征。结果表明,各样品中黄铁矿稀土元素总体表现为相似的配分模式,即LREE明显较HREE富集(La_N/Yb_N:20.3~59.12)、明显的负铕异常(δEu:0.32~0.78)和基本无铈异常(δCe:0.98~1.09)的特征;微量元素中Co含量为131.5×10~(-6)~647×10~(-6),Ni含量为96.9×10~(-6)~268×10~(-6),Co/Ni比值为0.6~5.6,As含量为23.7×10~(-6)~41.8×10~(-6),相对于大陆地壳的平均值明显富集;硫同位素组成具有相对狭窄的变化范围,δ~(34)S_(CDT)为1.6‰~3.2‰,极差为1.6‰。综合221铀矿床黄铁矿的微量元素、稀土元素和硫同位素组成特征,结合区域成矿地质背景,认为221铀矿床的成矿流体以地幔流体为主,伴有大气降水和盆地热卤水的参与;在铀成矿作用过程中,幔源流体的上升有利于加热和驱动富氧化性的大气降水深循环,黄铁矿和基性岩脉在铀成矿作用过程中提供了发生氧化还原反应的还原剂。
        In order to obtain the ore-forming fluid properties, sources and metallogenic environment information of uranium deposit 221, a geochemical study on trace elements and sulfur isotope of pyrite in the ores and altered diabases from the deposit was carried out systematically in this paper. The results show that the REEs of pyrite in each sample show a similar distribution pattern, that is, LREE is significantly more concentrated than HREE(LaN/YbN: 20.3~59.12) with strong negative Eu anomaly(δEu: 0.32~0.78) and no Ce anomaly(δCe:0.98~1.09). The content of Co in trace elements of pyrite is 131.5×10~(-6)~647×10~(-6), the content of Ni is 96.9×10~(-6)~268×10~(-6), the ratio of Co/Ni is 0.6~5.6. The content of As in pyrite is 23.7×10~(-6)~41.8×10~(-6), and the average value(38.34×10~(-6)) is significantly enriched relative to the continental crust. The sulfur isotope composition of pyrite has a relatively narrow range of variation, i.e. δ~(34)S_(CDT) ranging from 1.6‰ to 3.2‰. Combining these characteristics of trace elements, rare earth elements and sulfur isotope composition of pyrites with the regional metallogenic geological setting, it is considered that the ore-forming fluids of the 221 uranium deposit are mainly mantle fluids with the participation of meteoric water and basin hot brine. Pyrites and basic dikes provide reductants for redox reactions during uranium mineralization.
引文
[1] 陈振宇,黄国龙,朱捌,陈郑辉,黄凡,赵正,田泽瑾.南岭地区花岗岩型铀矿的特征及其成矿专属性[J].大地构造与成矿学,2014,38(2):264-275.Chen Z Y,Huang G L,Zhu B,Chen Z H,Huang F,Zhao Z,Tian Z J.The characteristics and metallogenic specialization of granite-hosted uranium deposits in the Nanling region[J].Geotectonica et Metallogenia,2014,38(2):264-275.
    [2] 毛孟才,沈俊,张导夫.南岭地区前震旦纪基底特征及其对铀成矿的贡献[J].铀矿地质,2002,18(1):36-40.Mao M C,Shen J,Zhang D F.Characteristics of pre-sinian basement in Nanling region and its contribution to uranium ore-formation[J].Uranium Geology,2002,18(1):36-40.
    [3] 张敏,陈培荣,黄国龙,凌洪飞.南岭龙源坝复式岩体的地球化学特征研究[J].铀矿地质,2006,6:336-344.Zhang M,Chen P R,Huang G L,Ling H F.The research on the geochemical characteristics of Longyuanba composite pluton in Nanling Region[J].Uranium Geology,2006,22(6):336-344.
    [4] 张敏,陈培荣,黄国龙,谭正中,凌洪飞,陈卫锋.南岭东段龙源坝复式岩体La-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报,2006,80(7):984-99.Zhang M,Chen P R,Huang G L,Tan Z Z,Ling H F,Chen W F.Single-zircon La-ICP-MS ages of the Longyuanba pluton in the Eastern Nanling Region and geological implication[J].Acta Geologica Sinica,2006,80(7):984-99.
    [5] 孙立强.粤北诸广山外围中生代花岗岩年代学地球化学与岩石成因研究(硕士学位论文) [D].南京:南京大学,2011.Sun L Q.Geochronology,geochemistry and petrogenesis of mesozoic granite peripheral area of the Zhuguangshan in the North Guangdong province(Dissertation)[D].Nanjing University,Nanjing,2011.
    [6] 陶继华,李武显,李献华,岑涛.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学:地球科学,2013,43(5):770-788.Tao J H,Li W X,Li X H,Cen T.Petrogenesis of early yanshanian highly evolved granites in the Longyuanba area,Southern Jiangxi province:evidence from zircon U-Pb dating,Hf-O isotope and whole-rock geochemistry[J].Science China:Earth Sciences,2013,43(5):760-778.
    [7] 牟平,潘家永,黄广文,钟福军,刘涛涛,孟华.黄沙铀矿区221铀矿床微量、稀土元素地球化学特征及其意义[J].科学技术与工程,2016,16(29):27-33,40.Mou P,Pan J Y,Huang G W,Zhong F J,Liu T T,Meng H.Geochemical characteristics of trace elements and its significance in uranium deposit 221,Huangsha uranium ore district[J].Science Technology and Engineering,2016,16(29):27-33,40.
    [8] 舒田田.南岭中段鹅公塘铀矿床地球化学特征与成矿机理(硕士学位论文) [D].南昌:东华理工大学,2017.Shu T T.Research on the geochemical characteristic and mineralization mechanism of Egongtang uranium deposits in the Middle of Nanling(Dissertation) [D].Nanchang:East China University of Technology,Nanchang,2017.
    [9] 钟福军,潘家永,许幼,祁家明,舒田田,牟平,吴德海.南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束[J].高校地质学报,2017,23(4):575-590.Zhong F J,Pan J Y,Xu Y,Qi J M,Shu T T,Mou P,Wu D H.Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the Middle Nangling Range:Constraints on petrogenesis and uranium mineralization[J].Geological Journal of China Universities,2017,23(4):575-590.
    [10] 吴德海,潘家永,夏菲,黄广文,钟福军,祁家明,洪斌跃,周堂波.赣南上窖铀矿床绿泥石特征与形成环境[J].矿物学报,2018,38(4):393-405.Wu D H,Pan J Y,Xia F,Huang G W,Zhong F J,Qi J M,Hong B Y,Zhou T B.Characteristics and formation conditions of chlorite in the Shangjiao uranium deposit in the Southern Jiangxi province,China[J].Acta Mineralogical Sinica,2018,38(4):393-405.
    [11] 吴德海,潘家永,夏菲,钟福军,黄广文,祁家明,洪斌跃.赣南上窖铀矿床微量元素地球化学特征与成矿模型[J].岩石矿物学杂志,2018,37(4):590-604.Wu D H,Pan J Y,Xia F,Zhong F J,Huang G W,Qi J M,Hong B Y.Trace elements geochemical characteristics and metallogenic model of the Shangjiao uranium deposit in Southern Jiangxi[J].Acta Petrologica Et Mineralogica,2018,37(4):590-604.
    [12] Liu G Q,Zhao K D,Jiang S Y,Chen Wei.In-situ sulfur isotope and trace element analysis of pyrite from the Xiwang uranium ore deposit in South China:implication for ore genesis[J].Journal of Geochemical Exploration,2018,7:1-17.
    [13] 李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学,1997,2:19-21,25-36.Li X H,Hu R Z,Rao B.Geochronology and geochemistry of cretaceous mafic dikes from Northern Guangdong SE China[J].Geochimica,1997,2:19-21,25-36.
    [14] 曹豪杰,黄国龙,许丽丽,黄乐真,王小冬,吴建勇,王春双.诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征[J].地质学报,2013,87(7):957-966.Cao H J,Huang G L,Xu L L,Huang L Z,Wang X D,Wu J Y,Wang C S.The Ar-Ar age and geochemical characteristics of diabase dykes of the Youdong fault zone in South of Zhuguang granite pluton[J].Acta Geologica Sinica,2013,87(7):957-966.
    [15] 刘亚轩,张勤,黄珍玉,吴健玲.ICP-MS法测定地球化学样品中As、Cr、Ge、V等18种微量痕量元素的研究[J].化学世界,2006,1:16-20.Liu Y X,Zhang Q,Huang Z Y,Wu J L.Study on determination of 18 trace elements including As,Cr,Ge,V in geochemical samples by ICP-MS[J].Chemical World,2006,1:16-20.
    [16] Sun S S,Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saunders A D and Norry M J(eds.) [J].Magmatism in the Ocean Basin.Geological Soccity Special Publication,1989,42:313-345.
    [17] Taylor S R.Trace element abundances and the chondritic earth model[J].Geochimica Et Cosmochimica Acta,1964,28(12):1989-1998.
    [18] Bralia A,Sabatini G,Troja F.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J].Mineralium Deposita,1979,14(3):353-374.
    [19] 严育通,李胜荣,贾宝剑,张娜,闫丽娜.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘,2012,19(4):214-226.Yan Y T,Li S R,Jia B J,Zhang N,Yan L N.Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J].Earth Science Frontiers,2012,19(4):214-226.
    [20] Bajwah Z U,Seccombe P K,Offler R.Trace element distribution,Co/Ni ratios and genesis of the Big Cadia iron_copper deposit,New South Wales,Australia[J].Mineralium Deposita,1987,22:292-303.
    [21] Ingham E S,Cook N J,Cliff J,Ciobanu C L,Huddleston A.A combined chemical,isotopic and microstructural study of pyrite from roll-front uranium deposits,Lake Eyre Basin,South Australia[J].Geochimica Et Cosmochimica Acta,2014,125(1):440-465.
    [22] Keith M,H?ckel F,Haase K M,Schwarz-Schampera U,Klemd R.Trace element systematics of pyrite from submarine hydrothermal vents[J].Ore Geology Reviews,2016,72(11):728-745.
    [23] 郇伟静,袁万明,李娜.川西甘孜—理塘金矿带形成条件的矿物电子探针与裂变径迹研究[J].现代地质,2011,25(02):261-270.Huan W J,Yuan W M,Li N.Study on the mineral electron microprobe evidence of the formation conditions and fission track of gold deposits in Ganzi-Litang Gold Belt,Western Sichuan Province[J].Geoscience,2011,25(2):261-270.
    [24] Palme H,O'Neill H S C.2.01-Cosmochemical estimates of mantle composition[J].Treatise on Geochemistry,2007.1-38.
    [25] Taylor S R,Mclennan S M.The Continental Crust:Its Composition And Evolution:An Examination of the Geochemical Record Preserved In Sedimentary Rocks[M].Blackwell Scientific Pub,1985.
    [26] 赵海香,戴宝章,李斌,朱志勇.小秦岭车仓峪钼矿成因研究:辉钼矿Re-Os年龄及黄铁矿微量元素制约[J].岩石学报,2015,31(3):784-790.Zhao H X,Dai B Z,Li B,Zhu Z Y.Genesis of the checangyu molybdenum deposit in the Xiaoqinling district:constraints from the Re-Os dating of molybdenite and in-situ trace element analysis of pyrite[J].Acta Petrologica Sinica,2015,31(3):784-790.
    [27] Chinnasamy S S,Mishra B.Greenstone metamorphism,hydrothermal alteration,and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri,Eastern Dharwar Craton,India [J].Economic Geology,2013,108 (5):1015-1036.
    [28] Hoefs J.Stable Isotope Geochemistry [M].Berlin:Springer,1997.1-201.
    [29] Chaussidon M,Lorand J P.Sulphur isotope composition of orogenic dpinel lherzolite massifs from Ariege (North-Eastern Pyrenees,France):an ion microprobe Dtudy[J].Geochimica Et Cosmochimica Acta,1990,54(10):2835-2846.
    [30] 张宏飞,高山.地球化学[M].北京:地质出版社,2012,236-238Zhang H F,Gao S.Geochemistry[M].Geological Publishing Company of Beijing,2012,236-238.
    [31] Ohmoto H,Goldhaber M B.Sulfur and Carbon Isotopes,in Geochemistry of Hydrothermal Ore Deposits[M],New York:Wiley,1997,517-612.
    [32] Ohmoto H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry,1986,16(2):491-559.
    [33] 吴亚飞,曾键年,李锦伟.安徽铜陵胡村铜钼矿床黄铁矿微量元素地球化学特征及其成因意义[J].矿物学报,2013,S2:620-621.Wu Y F,Zeng J N,Li J W.Geochemical characteristics of trace elements and their genetic significance of pyrite in the Hucun Cu-Mo deposit,Tongling,Anhui[J].Acta Mineralogical Sinica,2013,S2:620-621.
    [34] Bau M,Dulski P.Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids.contributions to mineralogy and petrology,1995,119(2):213-223
    [35] 钟福军,潘家永,夏菲,刘国奇,祁家明,郭新文,李海东.粤北长江铀矿田成矿过程中稀土元素地球化学特征[J].矿物岩石,2017 37(2):63-73.Zhong F J,Pan J Y,Xia F,Liu G Q,Qi J M,Guo X W,Li H D.Geochemical characteristics of rare earth elements in mineralization process in the Changjiang uranium ore field,Northern Guangdong,China[J].Mineral Petrol,2017,37(2):63-73.
    [36] Ismail R,Ciobanu C L,Cook N J,Teale G S,Giles D,Mumm A S,Wade B.Rare earths and other trace elements in minerals from Skarn assemblages,Hillside Ion Oxide-copper-gold Deposit,Yorke Peninsula,South Australia[J].Lithos,2014,184-187(1):456-477.
    [37] Jo?l Brugger,Liu W,Etschmann B,Mei Y,Sherman D M,Testemale D.A review of the coordination chemistry of hydrothermal systems,or do coordination changes make ore deposits?[J].Chemical Geology,2016,447:219-253.
    [38] 高山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹,HartmutKern.中国东部地壳的结构和组成[J].中国科学(D辑),1999,29(3):204-213.Gao S,Luo T C,Zhang B R,Zhang H F,Han Y W,Zhao Z D,HartmutKern.Structure and composition of the continental crust in East China[J].Science in China(Scries D),1999,29(3):204-213.
    [39] Ling H F.Origin of hydrothermal fluids of granite-type uranium deposits:constraints from redox Conditions[J].Geological Review,2011,57(2):193-206.
    [40] Hu R Z,Bi X W,Su W C,Peng J T,Li C Y.The relationship between uranium metallogenesis and crust extension during the cretaceous-tertiary in South China[J].Earth Science Frontiers,2004,11(1):153-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700