氮化镓/掺偶氮苯聚合物光栅耦合器特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of gallium nitride/azobenzene polymer grating coupler
  • 作者:班文君 ; 朱冰
  • 英文作者:BAN Wenjun;ZHU Bing;Department of Electronic Engineering and Information Science,University of Sciences and Technology of China;Key Laboratory of Electromagnetic Space Information,Chinese Academy of Sciences;
  • 关键词:波导光学 ; 光栅耦合器 ; 耦合模理论 ; 氮化镓 ; 偶氮苯聚合物
  • 英文关键词:waveguide optics;;grating coupler;;coupled mode theory;;gallium nitride;;azobenzene polymer
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:中国科学技术大学电子工程与信息科学系;中国科学院电磁空间信息重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.189
  • 基金:国家自然科学基金重点项目,61377022~~
  • 语种:中文;
  • 页:LDXU201904020
  • 页数:7
  • CN:04
  • ISSN:34-1163/TN
  • 分类号:124-130
摘要
提出一种氮化镓与掺偶氮苯聚合物复合材料集成光波导光栅耦合器,并通过仿真计算分析了这种器件的特性。用氮化镓铝衬底上对称的双氮化镓脊形光波导构成集成光波导定向耦合器,涂覆掺偶氮苯聚甲基丙烯酸甲酯聚合物作为包层.利用掺偶氮苯聚合物的光敏特性,在两脊形波导间区域通过周期性光照制作布拉格光栅。利用耦合模理论分析了这种光栅耦合器中各模式间的耦合关系,确定了各模式的耦合模方程,仿真计算了这种光栅耦合器各端口的输出特性,包括各模式的幅度随着传输距离的变化,以及各端口输出的幅度变化关系。在此基础上进一步分析了多周期耦合光栅耦合器的频谱特性,为集成光路中实现复杂频谱信号的操作提供了一种新的实现方案。
        An integrated optical waveguide grating coupler using gallium nitride and azobenzene polymer composites is designed,and the characteristics of the device are analyzed by simulation.An integrated optical waveguide directional coupler is constructed using two symmetric gallium nitride ridge optical waveguides on a gallium nitride aluminum substrate,and an azobenzene-containing polymethyl methacrylate polymer is coated as a cladding.Based on the photosensitive properties of the azobenzene polymer,a Bragg grating is fabricated by periodic illumination in the region between the two ridge waveguides.The coupling between the modes in the grating coupler is analyzed by the coupled mode theory.Using the coupled mode equations,the output characteristics of each port of the grating coupler are simulated,including the output of each mode as a function of the transmission distance and the amplitude variation under different coupling period conditions.The spectral characteristics of the multi-coupling-period grating coupler are further analyzed,which provides a new scheme for realizing the operation of complex spectrum signal in integrated optical path.
引文
[1]Burns W K,Hocker G B.End fire coupling between optical fibers and diffused channel waveguides[J].Applied Optics,1977,16(8):2048-2050.
    [2]Amano H,Kito M,Hiramatsu K,et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation(LEEBI)[J].Japanese Journal of Applied Physics,1989,28(12A):L2112.
    [3]Nakamura S,Senoh M,Nagahama S,et al. InGaN-based multi-quantum-well-structure laser diodes[J].Japanese Journal of Applied Physics,1996,35(1B):L74.
    [4]Jin S X,Li J,Li J Z,et al. GaN microdisk light emitting diodes[J].Applied Physics Letters,2000,76(5):631-633.
    [5]Ko Y H,Song J,Leung B,et al. Multi-color broadband visible light source via GaN hexagonal annular structure[J].Scientific Reports, 2014,4:5514.
    [6]Sun C K,Liang J C,Wang J C,et al. Two-photon absorption study of GaN[J].Applied Physics Letters,2000,76(4):439-441.
    [7]Hui R,Taherion S,Wan Y,et al. GaN-based waveguide devices for long-wavelength optical communications[J].Applied Physics Letters,2003,82(9):1326-1328.
    [8]Hui R,Wan Y,Li J,et al.Ⅲ-nitride-based planar lightwave circuits for long wavelength optical communications[J].IEEE Journal of Quantum Electronics,2005,41(1):100-110.
    [9]Wang Q,Dahal R,Feng I W,et al.Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition[J].Applied Physics Letters,2011,99(12):121106.
    [10]Dahal R,Ugolini C,Lin J Y,et al. Erbium-doped GaN optical amplifiers operating at 1.54μm[J].Applied Physics Letters,2009,95(11):111109.
    [11]Yuan J,Gao X,Yang Y,et al. GaN directional couplers for on-chip optical interconnect[J].Semiconductor Science and Technology,2017,32(4):045001.
    [12]Li X,Wang Y,Hane K,et al.GaN-based integrated photonics chip with suspended LED and waveguide[J].Optics Communications,2018,415:43-47.
    [13]Qiu W W.Research on Functional Polymer Optical Fiber Devices(功能聚合物光纤器件研究)[D].Hefei:Doctorial Dissertation of University of Science and Technology of China,2013:2-3(in Chinese).
    [14]Han K,Su W,Zhong M,et al. Reversible photocontrolled swelling-shrinking behavior of micron vesicles selfassembled from azopyridine-containing diblock copolymer[J].Macromolecular Rapid Communications,2008,29(23):1866-1870.
    [15]Zimmerman G,Chow L Y,Paik U J.The photochemical isomerization of azobenzenel[J].Journal of the American Chemical Society,1958,80(14):3528-3531.
    [16]Dumont M L,Hosotte S,Froc G,et al. Orientational manipulation of chromophores through photoisomerization[C].International Society for Optics and Photonics,1994,2042:2-14.
    [17]Luo Y H.Fabrication and Properties of Photosensitive Azopolymer Waveguide Gratings(光敏性偶氮苯聚合物波导光栅的制备及其特性)[D].Hefei:Doctorial Dissertation of University of Science and Technology of China,2009:44-45(in Chinese).
    [18]Yeh P,Taylor H F.Contradirectional frequency-selective couplers for guided-wave optics[J].Applied Optics,1980,19(16):2848-2855.
    [19]Ai L,Liu W F,et al.Two by two ports fused fiber grating coupler[J].Microwave and Optical Technology Letters,2007,49(9):2309-2311.
    [20]Wei S,Xu W,et al. Silicon photonic grating-assisted,contra-directional couplers[J].Optics Express,2013,21(3):3633-3650.
    [21]Ding J F,Zhang A P,Shao L Y,et al.Fiber-taper seeded long-period grating pair as a highly sensitive refractiveindex sensor[J].IEEE Photonics Technology Letters,2005,17(6):1247-1249.
    [22]Rao Y J.Principle and Application of Fiber Bragg Gratings(光纤光栅原理及应用)[M].Beijing:Science Press,2006:144-147(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700