甲酸液相分解制氢非均相催化剂研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on heterogeneous catalysts for hydrogen generation via liquid-phase formic acid decomposition
  • 作者:王彤 ; 薛伟 ; 王延吉
  • 英文作者:WANG Tong;XUE Wei;WANG Yan-ji;School of Chemical Engineering and Technology, Hebei University of Technology;Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving;
  • 关键词:制氢 ; 甲酸分解 ; 催化剂 ; 载体
  • 英文关键词:hydrogen generation;;formic acid decomposition;;catalyst;;support
  • 中文刊名:GXHX
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:河北工业大学化工学院;河北省绿色化工与高效节能重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:高校化学工程学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(21236001,21776057);; 天津市自然科学基金(17JCYBJC20100)
  • 语种:中文;
  • 页:GXHX201901001
  • 页数:9
  • CN:01
  • ISSN:33-1141/TQ
  • 分类号:7-15
摘要
氢气作为一种清洁的可再生能源载体,是最有希望替代化石燃料的能源之一。然而,如何实现氢气的安全存储和快速释放是氢能利用的难点。甲酸作为极具应用潜力的液态化学储氢材料,其分解制氢逐渐成为研究热点。从实际应用角度考虑,设计与开发高效非均相催化剂对于甲酸分解的应用十分重要,而载体在非均相催化剂中通常具有重要作用。作者综述了近年来国内外非均相催化甲酸液相分解制氢的研究现状,以载体分类为主线,重点概述了以碳材料、金属氧化物、二氧化硅(含分子筛)、复合材料及树脂、金属有机框架(MOFs)作为载体制备的催化剂在甲酸分解过程中的应用,其目的在于强调在该领域取得的成果以及对今后的研究提出建议。
        Hydrogen is a renewable and clean energy regarded as one of the most promising candidates for fossil energy replacement. However, safe storage and rapid release of hydrogen is the difficulty in hydrogen utilization. Decomposition of formic acid(FA) for hydrogen generation increasingly becomes research hotspot. It is important to develop high-performance heterogeneous catalysts for FA dehydrogenation. Therefore, studies of hydrogen generation from liquid-phase formic acid using heterogeneous catalysts were reviewed. Carbon, metal oxides, silica(zeolites), composite materials, resins and metal-organic frameworks(MOFs) as catalyst supports were focused. Remarkable advances achieved are emphasized and future research directions are discussed.
引文
[1]SCHLAPBACH L,ZüTTEL A.Hydrogen-storage materials for mobile applications[J].Nature,2002,414(6861):353-358.
    [2]YANG J,SUDIK A,WOLVERTON C,et al.High capacity hydrogen storage materials:attributes for automotive applications and techniques for materials discovery[J].Chemical Society Reviews,2010,39(2):656-75.
    [3]TURNER J A.Sustainable Hydrogen Production[J].Science,2004,305(5686):972-974.
    [4]FELDERHOFF M,WEIDENTHALER C,VON H R,et al.Hydrogen storage:the remaining scientific and technological challenges[J].Physical Chemistry Chemical Physics,2007,9(21):2643-2653.
    [5]JIANG H L,SINGH S K,YAN J M,et al.Liquid-phase chemical hydrogen storage:catalytic hydrogen generation under ambient conditions[J].ChemSusChem,2010,3(5):541-549.
    [6]GRASEMANN M,LAURENCZY G.Formic acid as a hydrogen source-recent developments and future trends[J].Energy&Environmental Science,2012,5(8):8171-8181.
    [7]PETIT J F,MIELE P,DEMIRCI U B.Ammonia borane H3N-BH3 for solid-state chemical hydrogen storage:different samples with different thermal behaviors[J].International Journal of Hydrogen Energy,2016,41(34):15462-15470.
    [8]DU Y,SU J,WEI L,et al.Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J].ACS Applied Materials&Interfaces,2015,7(2):1031-1034.
    [9]柳翔,李舒爽,刘永梅,等.利用多功能、多用途的可再生甲酸实现化学品的绿色与可持续合成[J].催化学报,2015,36(9):1461-1475.LIU X,LI S S,LIU Y M,et al.Formic acid:a versatile renewable reagent for green and sustainable chemical synthesis[J].Chinese Journal of Catalysis,2015,36(9):1461-1475.
    [10]GABOR L.Hydrogen Storage and Delivery:The carbon dioxide-formic acid couple[J].CHIMIA International Journal for Chemistry,2011,65(9):663-666.
    [11]ENTHALER S.Carbon dioxide-the hydrogen-storage material of the future?[J].ChemSusChem,2008,1(10):801-804.
    [12]Singh A K,Singh S,Kumar A.Hydrogen energy future with formic acid:a renewable chemical hydrogen storage system[J].Catalysis Science&Technology,2015,6(1):12-40.
    [13]SABATIER P,MAILHE A.Catalytic decomposition of formic acid[J].Compt rend,1912,152:1212-1215.
    [14]TRILLO J M,MUNUERA G,CRIADO J M.Catalytic decomposition of formic acid on metal oxides[J].Catalysis Reviews,1972,1(7):51-86.
    [15]BLAKE P G,DAVIES H H,Jackson G E.Dehydration mechanisms in the thermal decomposition of gaseous formic acid[J].Journal of the Chemical Society B Physical Organic,1971(10):1923-1925.
    [16]GUERRIERO A,BRICOUT H,SORDAKIS K,et al.Hydrogen production by selective dehydrogenation of HCOOH catalyzed by ru-biaryl sulfonated phosphines in aqueous solution[J].ACS Catalysis,2014,4(9):3002-3012.
    [17]FUKUZUMI S,KOBAYASHI T,SUENOBU T.Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water[J].Journal of the American Chemical Society,2010,132(5):1496-1497.
    [18]BERTINI F,MELLONE I,IENCO A,et al.Iron(II)Complexes of the linear rac-tetraphos-1 ligand as efficient homogeneous catalysts for sodium bicarbonate hydrogenation and formic acid dehydrogenation[J].ACS Catalysis,2015,5(2):1254-1265.
    [19]MONTANDON-CLERC M,DALEBROOK A F,LAURENCZY G.Quantitative aqueous phase formic acid dehydrogenation using iron(II)based catalysts[J].Journal of Catalysis,2016,343:62-67.
    [20]杨新春,徐强.含金金属纳米颗粒用于液相化学氢化物催化制氢[J].催化学报,2016,37(10):1594-1599.YANG X C,XU Q.Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides[J].Chinese Journal of Catalysis,2016,37(10):1594-1599.
    [21]ZHOU X,HUANG Y,XING W,et al.High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J].Chemical Communications,2008,44(30):3540-3542.
    [22]HUANG Y,ZHOU X,YIN M,et al.Novel PdAu@Au/C core-shell catalyst:superior activity and selectivity in formic acid decomposition for hydrogen generation[J].Chemistry of Materials,2010,22(18):5122-5128.
    [23]WANG Z L,YAN J M,WANG H L,et al.Pd/C Synthesized with citric acid:an efficient catalyst for hydrogen generation from formic acid/sodium formate[J].Scientific Reports,2012,2:598.
    [24]WANG Z,YAN J,PING Y,et al.An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature[J].Angewandte Chemie-International Edition,2013,52(16):4406-4409.
    [25]WANG Z,PING Y,YAN J,et al.Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst[J].International Journal of Hydrogen Energy,2014,39(10):4850-4856.
    [26]ZHU Q,TSUMORI N,XU Q.Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions[J].Chemical Science,2014,5(1):195-199.
    [27]ZHU Q L,TSUMORI N,XU Q.Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres:a weakly-capping growth approach[J].Journal of the American Chemical Society,2015,137(36):11743-11748.
    [28]JIANG Y,FAN X,XIAO X,et al.La2O3-modified highly dispersed AuPd alloy nanoparticles and their superior catalysis on the dehydrogenation of formic acid[J].International Journal of Hydrogen Energy,2017,42(15):9353-9360.
    [29]LI J,CHEN W,ZHAO H,et al.Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid[J].Journal of Catalysis,2017,352:371-381.
    [30]ZHANG S,JIANG B,JIANG K,et al.Surfactant-free synthesis of carbon-supported palladium nanoparticles and size-dependent hydrogen production from formic acid-formate solution[J].ACS Applied Materials&Interfaces,2017,9(29):24678-24687.
    [31]ZHU Q L,SONG F Z,WANG Q J,et al.A solvent-switched in situ confinement approach for immobilizing highly-active ultrafine palladium nanoparticles:boosting catalytic hydrogen evolution[J].Journal of Materials Chemistry A,2018,6(14):5544-5549.
    [32]MARCANO D C,KOSYNKIN D V,BERLIN J M,et al.Improved Synthesis of Graphene Oxide[J].ACS Nano,2010,4(8):4806-4814.
    [33]何光裕,侯景会,黄静,等.ZnO/氧化石墨烯复合材料的制备及其可见光催化性能[J].高校化学工程学报,2013,27(4):663-668.HE G Y,HOU J H,HUANG J,et al.Preparation and visible-light driven photocatalytic properties of zno/graphene oxide composite[J].Journal of Chemical Engineering of Chinese Universities,2013,27(4):663-668.
    [34]JIANG Y,FAN X,XIAO X,et al.Novel AgPd hollow spheres anchored on graphene as an efficient catalyst for dehydrogenation of formic acid at room temperature[J].Journal of Materials Chemistry A,2016,4(2):657-666.
    [35]CHEN Y,ZHU Q,TSUMORI N,et al.Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide:a non-noble metal sacrificial approach[J].Journal of the American Chemical Society,2015,137(1):106-109.
    [36]YAN J M,LI S J,YI S S,et al.Anchoring and upgrading ultrafine nipd on room-temperature-synthesized bifunctional NH2-N-rGOtoward low-cost and highly efficient catalysts for selective formic acid dehydrogenation[J].Advanced Materials,2018,30(12):1703038.
    [37]ZHU D,WEN Y,XU Q,et al.Surface-amine-implanting approach for catalyst functionalization:prominently enhancing catalytic hydrogen generation from formic acid[J].European Journal of Inorganic Chemistry,2017,2017(40):4808-4813.
    [38]LI Z,YANG X,TSUMORI N,et al.Tandem nitrogen functionalization of porous carbon:toward immobilizing highly active palladium nanoclusters for dehydrogenation of formic acid[J].ACS Catalysis,2017,7(4):2720-2724.
    [39]FENG C,HAO Y,ZHANG L,et al.AgPd nanoparticles supported on zeolitic imidazolate framework derived N-doped porous carbon as an efficient catalyst for formic acid dehydrogenation[J].RSC Advances,2015,5(50):39878-39883.
    [40]BI Q,LIN J,LIU Y,et al.Dehydrogenation of formic acid at room temperature:boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon[J].Angewandte Chemie International Edition,2016,55(39):11849-11853.
    [41]BI Q,DU X,LIU Y,et al.Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J].Journal of the American Chemical Society,2012,134(21):8926-8933.
    [42]BI Q,LIN J,LIU Y,et al.Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium[J].Journal of Power Sources,2016,328:463-471.
    [43]AKBAYRAK S,TONBUL Y,OZKAR S.Nanoceria supported palladium(0)nanoparticles:superb catalyst in dehydrogenation of formic acid at room temperature[J].Applied Catalysis B:Environmental,2017,206:384-392.
    [44]YADAV M,SINGH A K,TSUMORI N,et al.Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage[J].Journal of Materials Chemistry,2012,22(36):19146-19150.
    [45]YADAV M,AKITA T,TSUMORI N,et al.Strong metal-molecular support interaction(SMMSI):amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid[J].Journal of Materials Chemistry,2012,22(25):12582-12586.
    [46]BULUT A,YURDERI M,KARATAS Y,et al.Pd-MnOx nanoparticles dispersed on amine-grafted silica:Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions[J].Applied Catalysis B:Environmental,2015,164:324-333.
    [47]BULUT A,YURDERI M,KARATAS Y,et al.MnOx-promoted PdAg alloy nanoparticles for the additive-free dehydrogenation of formic acid at room temperature[J].ACS Catalysis,2015,5(10):6099-6110.
    [48]KARATAS Y,BULUT A,YURDERI M,et al.PdAu-MnOx nanoparticles supported on amine-functionalized SiO2 for the room temperature dehydrogenation of formic acid in the absence of additives[J].Applied Catalysis B:Environmental,2016,180:586-595.
    [49]LIU Q,YANG X,HUANG Y,et al.A schiff base modified gold catalyst for green and efficient h2 production from formic acid[J].Energy&Environmental Science,2015,11(8):3204-3207.
    [50]WANG N,SUN Q,BAI R,et al.In situ confinement of ultrasmall pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J].Journal of the American Chemical Society,2016,138(24):7484-7487.
    [51]SUN Q,WANG N,BING Q,et al.Subnanometric hybrid Pd-M(OH)2,M=Ni,Co,clusters in zeolites as highly efficient nanocatalysts for hydrogen generation[J].Chem,2017,3(3):477-493.
    [52]MORI K,MASUDA S,TANAKA H,et al.Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles:a dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage[J].Chemical Communications,2017,53(34):4677-4680.
    [53]XU L,JIN B,ZHANG J,et al.Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitride-functionalized SBA-15[J].RSC Advances,2016,6(52):46908-46914.
    [54]WANG Z,HAO X,HU D,et al.PdAu bimetallic nanoparticles anchored on amine-modified mesoporous ZrSBA-15 for dehydrogenation of formic acid at ambient conditions[J].Catalysis Science&Technology,2017,7(11):2213-2220.
    [55]JIN M H,PARK J H,OH D,et al.Pd/NH2-KIE-6 catalysts with exceptional catalytic activity for additive-free formic acid dehydrogenation at room temperature:controlling Pd nanoparticle size by stirring time and types of Pd precursors[J].International Journal of Hydrogen Energy,2018,43(3):1451-1458.
    [56]MORI K,DOJO M,YAMASHITA H.Pd and Pd-Ag Nanoparticles within a macroreticular basic resin:an efficient catalyst for hydrogen production from formic acid decomposition[J].ACS Catalysis,2013,3(6):1114-1119.
    [57]YAN J,WANG Z,GU L,et al.AuPd-MnOx/MOF-graphene:an efficient catalyst for hydrogen production from formic acid at room temperature[J].Advanced Energy Materials,2015,5(10):1500107.
    [58]SONG F,ZHU Q,YANG X,et al.Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid[J].Advanced Energy Materials,2018,8(1):1701416.
    [59]黄刚,陈玉贞,江海龙.金属有机骨架材料在催化中的应用[J].化学学报,2016,74(2):113-129.HUANG G,CHEN Y Z,JIANG H L.Metal-Organic Frameworks for Catalysis[J].Acia Chimica.Sinica,2016,74(2):113-129.
    [60]黎林清,吕迎,李军,et al.金属-有机骨架材料在烯烃氧化中的应用[J].化学进展,2012,24(5):747-756.LI L Q,LV Y,LI J,et al.Application of Metal-Organic Frameworks in Olefin Oxidation[J].PROGRESS IN CHEMISTRY,2012,24(5):747-756.
    [61]周颖,隆继兰,李映伟.金属有机骨架衍生Ni基材料催化烷烃选择氧化[J].催化学报,2016,37(6):955-962.ZHOU Y,LONG J L,LI Y W.Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes[J].Chinese Journal of Catalysis,2016,37(6):955-962.
    [62]邱健豪,何明,贾明民,等.金属有机骨架材料制备双金属或多金属催化材料及其应用[J].化学进展,2016,28(7):1016-1028.QIU J H,HE M,JIA M M,et al.Metal organic frameworks for bi-and multi-metallic catalyst and their applications[J].Progress in Chemistry,2016,28(7):1016-1028.
    [63]GU X,LU Z,JIANG H,et al.Synergistic catalysis of metal-organic framework-immobilized au-pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J].Journal of the American Chemical Society,2011,133(31):11822-11825.
    [64]MARTIS M,MORI K,FUJIWARA K,et al.Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature[J].The Journal of Physical Chemistry C,2013,117(44):22805-22810.
    [65]KE F,WANG L,Zhu J.An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid[J].Nanoscale,2015,7(18):8321-8325.
    [66]DAI H,XIA B,WEN L,et al.Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid[J].Applied Catalysis B:Environmental,2015,165:57-62.
    [67]GAO S,LIU W,FENG C,et al.A Ag-Pd alloy supported on an amine-functionalized UiO-66 as an efficient synergetic catalyst for the dehydrogenation of formic acid at room temperature[J].Catalysis Science&Technology,2016,6(3):869-874.
    [68]CHENG J,GU X,LIU P,et al.Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal-organic frameworks at room temperature[J].Journal of Materials Chemistry A,2016,4(42):16645-16652.
    [69]TEDSREE K,CHAN C W,JONES S,et al.13C NMR guides rational design of nanocatalysts via chemisorption evaluation in liquid phase[J].Science,2011,332(6026):224-228.
    [70]TEDSREE K,LI T,JONES S,et al.Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J].Nature Nanotechnology,2011,6(5):302-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700