铜在碳钢中扩散及其对碳钢耐腐蚀性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel
  • 作者:马涛 ; 李慧蓉 ; 高建新 ; 李运刚
  • 英文作者:MA Tao;LI Huirong;GAO Jianxin;LI Yungang;College of Metallurgy and Energy, North China University of Science and Technology;
  • 关键词:金属材料 ; ; Cu-Fe梯度材料 ; 扩散系数 ; 扩散激活能 ; 极化曲线
  • 英文关键词:metallic materials;;copper;;Cu-Fe gradient material;;diffusion coefficient;;diffusion active energy;;polarization curve
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:华北理工大学冶金与能源学院;
  • 出版日期:2019-03-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51774142,51474088);; 河北省自然科学基金(E2017209239);; 华北理工大学研究生创新项目(2018B21)~~
  • 语种:中文;
  • 页:CYJB201903009
  • 页数:7
  • CN:03
  • ISSN:21-1328/TG
  • 分类号:67-73
摘要
用水溶液电沉积法在碳钢表面电镀铜并进行高温扩散退火,用Den-Broeder法计算铜在碳钢中的扩散系数,研究了铜在碳钢中的扩散行为及其对碳钢耐腐蚀性的影响。结果表明,铜在碳钢中的扩散主要沿晶界进行,铜的扩散抑制了热处理过程中碳钢晶粒的长大。铜在碳钢中的扩散系数为1.11×10-16~3.03×10-11 cm2/s,扩散系数随着退火温度的提高而升高,随着铜浓度的提高而降低。铜在碳钢高温奥氏体区中扩散所需的激活能为126~167 kJ/mol,在高于低温铁素体+奥氏体混合区中激活能为90~108 kJ/mol。通过铜在碳钢中的扩散制备的Cu-Fe梯度材料,具有优良的耐腐蚀性。
        The copper coating was deposited on the surface of carbon steel by electroplating method, and then annealed at high temperature. The diffusion coefficient of Cu in carbon steel were calculated by the Den-Broeder method, while the influence of Cu-metalizing on the corrosion resistance of carbon steel was investigated. Results show that the inward diffusion of Cu is mainly along grain boundaries of the carbon steel, while the diffusion of Cu will inhibit the growth of grains of the steel during heat treatment. The diffusion coefficient of Cu in carbon steel limits between 1.11×10-16~3.03×10-11 cm2/s, which increases with the increasing annealing temperature and decreases with the increasing Cu-concentration of copper. The diffusion activation energy of copper Cu in the ferrite + austenite region of carbon steel is between 90~108 kJ/mol at low temperatures, and in the ferrite region of carbon steel at high temperatures is between 126~167 kJ/mol. Furthermore, a Cu-Fe gradient material on the carbon steel gennerated via Cu-inward diffusion has better corrosion resistance rather than the bare carbon steel in NaCl solution.
引文
[1] Yu Q C, Wang Z Y, Wang C. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3under dry/humid alternative condition[J]. Acta Metall. Sin., 2010, 46:1133(于全成,王振尧,汪川.表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J].金属学报, 2010, 46:1133)
    [2] Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning[J]. Int. J. Miner. Metall. Mater., 2009, 16:58
    [3] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci.,2009, 51:99
    [4] Liu R, Chen X P, Wang X D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment[J]. Hot Work. Technol., 2014, 43(20):19(刘芮,陈小平,王向东等.合金元素对耐候钢在海洋大气环境下耐蚀性的影响[J].热加工工艺, 2014, 43(20):19)
    [5] Liu L H, Qi H B, Lu Y P, et al. A review on weathering steel research[J]. Corros. Sci. Prot. Technol., 2003, 15(2):87(刘丽宏,齐慧滨,卢燕平等.耐大气腐蚀钢的研究概况[J].腐蚀科学与防护技术, 2003, 15(2):87)
    [6] Morcillo M, Diaz I, Chico B, et al. Weathering steels:From empirical development to scientific design. A review[J]. Corros. Sci.,2014, 83(7):6
    [7] Chen X H, Dong J H, Han E H, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/dry environments[J].Mater. Prot., 2007, 40(10):19(陈新华,董俊华,韩恩厚等.干湿交替环境下Cu、Mn合金化对低合金钢腐蚀行为的影响[J].材料保护, 2007, 40(10):19)
    [8] Yue L J, Wang L M, Han J S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel[J]. J. Rare Earths, 2010, 28(6):952
    [9] Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder[J]. Metall. Mater. Trans. B, 2004, 35B:223
    [10] Qi Y F, Wang B, Zhou J Y, et al. Structure and property of W-Ni-Cu functionally graded materials by composite electrodeposition[J].Rare Metal. Mat. Eng., 2017, 46(12):3893(齐艳飞,王波,周景一等.复合电沉积制备W-Ni-Cu梯度材料的组织及性能[J].稀有金属材料与工程, 2017, 46(12):3893)
    [11] Sprengel W, Koiwa M. The Decisive Contributions by L.Boltzmann and C. Matano to the Quantitative Analysis of Diffusion Phenomena[J]. Diff. Found., 2014, 1:49
    [12] Snabl M, Ondrejcek M. Surface diffusion of K on Pd 111:Coverage dependence of the diffusion coefficient determined[J]. J.Chem. Phys., 1998
    [13] Den Broeder F J A. Broeder F J A D. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems[J]. Scripta Metall., 1969, 3(5):321
    [14] Feng L, Li J S, Cui Y W, et al. Research on interdiffusion behavior of Ti-Zr binary alloy in theβphase[J]. Rare Metal. Mat. Eng.,2011, 40(4):610(冯亮,李金山,崔予文等. Ti-Zr二元合金在β相区的互扩散行为研究[J].稀有金属材料与工程, 2011, 40(4):610)
    [15] Wei H, Liu G, Xiao X, et al. Dynamic recrystallization behavior of a medium carbon vanadium micro alloyed steel[J]. Mater. Sci.Eng. A, 2013, 573:215
    [16] Martín-Martín R, Dorta-Guerra R, Torsney B. Multiplicative algorithm for discriminating between Arrhenius and non-Arrhenius behaviour[J]. Chemom. and Intell. Lab. Syst., 2014, 139(15):146
    [17] Zhang C, Yao Y, Chen S. Size-dependent surface energy density of typically fcc metallic nanomaterials[J]. Comput. Mater. Sci.,2014, 82(1):372
    [18] Taniker S, Yilmaz C. Phononic gaps induced by inertial amplification in BCC and FCC lattices[J]. Phys. Lett. A, 2013, 377(30):1930
    [19] Chen S Q, Wang P, Zhang D. The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behavior of Q235 carbon steel in seawater[J]. Mater. Corros., 2016, 67(4):340
    [20] Shen D, Li G, Guo C, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation[J]. Appl. Surf. Sci., 2013, 287(24):451
    [21] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56:935
    [22] Dunn D S, Bogart M B, Brossia C S, et al. Corrosion of iron under alternating wet and dry conditions[J]. Corrosion, 2000, 56:470
    [23] Zhang J, Liu F L, Li W H, et al. Effects of Srb on corrosion of ZnAl-Cd anode in marine sediment[J]. Acta Metall. Sin., 2010, 46(10):1250(张杰,刘奉令,李伟华等.海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J].金属学报, 2010, 46(10):1250)
    [24] Gao N, Wang C, Zhang F H, et al. The Influence of major ions on the corrosion of penetrating zinc steel in oil field water[J]. J. Petro. Univ., 2011, 24(3):31(高楠,王婵,张凤华等.油田采出水中主要腐蚀离子对渗锌碳钢的腐蚀[J].石油化工高等学校学报, 2011, 24(3):31)
    [25] Ma T, Yang G Y, Deng M L, et al. Research status and prospect of copper-bearing steel[J]. Hot Work. Technol., 2017, 46(2):36.(马涛,杨桂宇,邓美乐等.含铜钢的研究现状及展望[J].热加工工艺, 2017, 46(2):36)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700