隧洞主支洞交叉段围岩及二衬支护有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element analysis of surrounding rock and secondary lining support at intersection of main and branch tunnel
  • 作者:曹伟
  • 英文作者:CAO Wei;Xinjiang Water Conservancy & Hydropower Survey and Design Institute;
  • 关键词:隧洞 ; 交叉口 ; 三维模型 ; 有限元法
  • 英文关键词:Tunnel;;intersection;;3D model;;finite element method
  • 中文刊名:GXSL
  • 英文刊名:Guangxi Water Resources & Hydropower Engineering
  • 机构:水利部新疆水利水电勘测设计研究院;
  • 出版日期:2019-02-28
  • 出版单位:广西水利水电
  • 年:2019
  • 期:No.187
  • 语种:中文;
  • 页:GXSL201901007
  • 页数:4
  • CN:01
  • ISSN:45-1147/TV
  • 分类号:27-30
摘要
目前国内外长隧洞、超长隧洞发展迅猛,在设计与施工中常增设支洞以增加工作面及其它作用。主支洞交叉段结构型式复杂、断面较大,常规的计算方法难以准确、全面地得到其受力形状态。利用通用有限元软件Abaqus,建立主支洞交叉段三维模型,对其施加荷载并计算得到应力分布与形分布状态云图以及几处特殊位置断面云图。计算结果表明:隧洞交叉段交叉口位置围岩应力集中现象明显,边墙、底板应力较大,顶拱位移明显,此区域为隧洞交叉段最不利位置。建议此区域在开挖过程中应高度重视,且加强地板、边墙外层钢筋,加强顶拱初期柔性支护,二次衬砌刚性支护。可根据围岩形阶段与稳定情况预留适当的围岩形量,以便更大地发挥围岩自稳能力。
        At present, the development of long and super-long tunnels is very rapid at home and abroad. Branch tunnels were usually designed for certain purposes such as increasing working face. The intersection of main and branch tunnels has complex structure and large section, so it is difficult to acquire accurate and comprehensive stress and deformation state by conventional calculation method. Finite element software Abaqus was used to establish the 3D model for the intersection position. After load was applied, the stress and deformation distribution clouds as well as clouds of some specific positions were calculated. The results of calculation demonstrate that obvious stress concentration of surrounding rock occurs at the intersection; stress is higher at the side wall and base slab;displacement of top arch is distinct; this area is the most disadvantageous position. It is suggested that great attention should be paid to this area in the course of excavation; the outer reinforcement of floor and side wall should be strengthened, and the flexible support at the initial stage of top arch should be strengthened. Secondary lining rigid support can reserve appropriate deformation according to the deformation stage and stability of surrounding rock, so as to give full play to the self-stability of surrounding rock.
引文
[1]崔炜,韩宇,李雪春,等.公路下输水隧洞岔洞结构浅埋暗挖施工的三维有限元模拟[C]//中国交通土建工程学会,2006.
    [2]赵喜海.北京地铁复杂洞群的有限元模拟分析[J].广西交通科技,2003,28(4):52-55.
    [3]王于宝,王晓卫,颜新荣,等.大坂引水隧洞工程形监测及稳定性分析[J].岩石力学与工程学报,2005,24(20):3783-3787.
    [4]戴永浩,陈卫忠,于洪丹,等.大坂膨胀性泥岩引水隧洞长期稳定性分析[J].岩石力学与工程学报,2010,29(S1):3227-3234.
    [5]陈国庆,冯夏庭,周辉,等.锦屏二级水电站引水隧洞长期稳定性数值分析[J].岩土力学,2007(S1):417-422.
    [6]关惠平,熊俊楠,陶双江,等.近水平岩层隧道围岩形监测及其稳定性分析[J].岩矿测试,2008,27(5):357-362.
    [7]朱训国,夏洪春.深埋隧洞围岩及其支护结构内力与形监测结果分析与研究[J].金属矿山,2016,45(10):65-70.
    [8]翟明杰,穆咏梅,石维新.有限元法在浅埋暗挖输水隧洞衬砌受力研究中的应用[J].水利水电技术,2009,40(11):76-79.
    [9]高水头引水隧洞衬砌结构非线性有限元分析[D].西安:西安理工大学,2010.
    [10]马思明.超浅埋暗挖通道施工三维仿真模拟[D].上海:同济大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700