低维限域结构中水与物质的输运
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water and mass transport in low-dimensional confined structures
  • 作者:张锡奇 ; 闻利平 ; 江雷
  • 英文作者:Zhang Xi-Qi;Wen Li-Ping;Jiang Lei;Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry,Beihang University;
  • 关键词:低维限域结构 ; 纳米通道 ; 物质输运
  • 英文关键词:low-dimensional confined structure;;nanochannel;;mass transport
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院理化技术研究所仿生材料与界面科学重点实验室;中国科学院大学;北京航空航天大学化学学院仿生智能界面材料科学与技术教育部重点实验室;
  • 出版日期:2019-01-02 07:00
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点基础研究发展计划(批准号:2017YFA0206900);; 国家自然科学基金(批准号:21625303,51603211)资助的课题~~
  • 语种:中文;
  • 页:WLXB201901006
  • 页数:21
  • CN:01
  • ISSN:11-1958/O4
  • 分类号:56-76
摘要
低维限域结构中水与物质的输运研究,对于解决界面化学和流体力学中的遗留问题十分关键.近年来,研究人员采用分子动力学模拟和实验手段研究低维限域结构中水与物质的输运,并将其应用于物质输运、纳米限域化学反应、纳米材料制备等领域.本文从理论和实验的角度总结一维和二维纳米通道的水与物质输运,介绍了本研究组提出的"量子限域超流体"概念,并用于解释纳米通道中超快物质的输运现象;在此基础上概述了一维纳米通道中的分子动力学模拟和水浸润性,以及外部环境(如温度和电压)对限域结构中水浸润性的调控,同时阐述了低维限域结构中的液体输运;对二维纳米通道中的分子动力学模拟、液体浸润性以及液体输运进行了综述;讨论了纳米通道限域结构在物质输运、纳米限域化学反应和纳米材料制备等领域的应用;对低维限域结构中水与物质输运面临的挑战和前景进行了展望.
        Water and mass transport in low-dimensional confined structures is of great importance in solving many challenging problems in interface chemistry and fluid mechanics, and presents versatile applications including mass transport,catalysis, chemical reaction, and nanofabrication. Recent achievements of water and mass transport in low-dimensional confined structures are summarized. Water flow confined in nanochannels with different wettability reveals the viscosity in the interface region increases as the contact angle decreases, whereas the flow capacity of confined water increases as the contact angle increases. Small difference in the nanochannel size has a big effect on the confined water flow, especially for nanochannels with a diameter smaller than 10 nm. The phenomena of ultrafast mass transport are universal in the nanochannels with smaller diameter(<10 nm), e. g., ultrafast ionic transport across the biological and artificial ionic channel; ultrafast water flow through aligned carbon nanotube(CNT) membrane; ultrafast water permeation through GO membranes with hydrophilic end-group. From the classical hydrodynamics, the penetration barrier in such a small channel in both biological and artificial systems is huge, which is contradictory with the actual phenomena. Thus,we propose a concept of quantum-confined superfluid(QSF) to understand this ultrafast fluid transport in nanochannels. Molecular dynamic simulations of water confined in 1D nanochannel of CNTs(with diameter of 0.81 nm) and2 D nanochannel of graphene(two graphene layers distance <2 nm) demonstrate ordered chain of water molecules and pulse-like transmission of water through the channel, further provide proof for the QSF concept. Reversible switching of water wettability in the nanochannel via external stimuli(temperature and voltage) are presented, raising the temperature causes water wettability switching from hydrophilic to hydrophobic state, while increasing the voltage induces water wettability change from hydrophobic to hydrophilic state. The ultrafast liquid transport performance promotes the application of nanochannels in separation. There exist an upper limit for the surface tension of the liquid(≈180 mN/m)below which the nanochannels of CNTs can be wetting. Then, we summarized versatile applications of low-dimensional confined structures in catalysis, chemical reaction, nanofabrication, and battery. Despite considerable advances over the last few decades, many challenging issues on water and mass transport in low-dimensional confined structures are still unresolved. The biggest obstacle is focused on understanding the physical origin of the non-classical behavior of liquid under confinement. In this situation, our proposed QSF concept will provide new ideas for the fluidic behavior in the nanochannels, and the introduction of QSF concept might create QSF-based chemistry. By imitating enzyme synthesis,the reactant molecules can be arranged in a certain order, and the reaction barrier will be greatly reduced to achieve highly efficient and selective chemical synthesis. Some previous works including organic reaction and polymeric synthesis have approached the example of QSF-like chemical reactions. On the other hand, the advances in nanomechanical techniques such as surface forces apparatus, atomic force microscope, and sum-frequency vibrational spectroscopy will provide useful experimental approaches to understand the mechanism of water and mass transport in low-dimensional confined structures, and promote wider application of nanoconfined structures.
引文
[1]Meinzer F C,Clearwater M J,Goldstein G 2001 Environ.Exp.Bot.45 239
    [2]von Caemmerer S,Farquhar G D 1981 Planta 153 376
    [3]Preston G M,Carroll T P,Guggino W B,Agre P 1992Science 256 385
    [4]MacKinnon R 2004 Angew.Chem.Int.Ed.43 4265
    [5]Keynes R D,Martins-Ferreira H 1953 J.Physiol.119315
    [6]Jirage K B,Hulteen J C,Martin C R 1997 Science 278655
    [7]Lee S B,Mitchell D T,Trofin L,Nevanen T K,S?derlund H,Martin C R 2002 Science 296 2198
    [8]Pan X,Fan Z,Chen W,Ding Y,Luo H,Bao X 2007Nat.Mater.6 507
    [9]Chen Z,Guan Z,Li M,Yang Q,Li C 2011 Angew.Chem.Int.Ed.50 4913
    [10]Zhang S,Zhang B,Liang H,Liu Y,Qiao Y,Qin Y 2018Angew.Chem.Int.Ed.57 1091
    [11]Castillejos E,Debouttière P J,Roiban L,Solhy A,Martinez V,Kihn Y,Ersen O,Philippot K,Chaudret B,Serp P 2009 Angew.Chem.Int.Ed.48 2529
    [12]Martin C R 1994 Science 266 1961
    [13]Tsang S C,Chen Y K,Harris P J F,Green M L H 1994Nature 372 159
    [14]Chen W,Pan X,Willinger M G,Su D S,Bao X 2006 J.Am.Chem.Soc.128 3136
    [15]Miners S A,Rance G A,Khlobystov A N 2016 Chem.Soc.Rev.45 4727
    [16]Martin C R 1996 Chem.Mater.8 1739
    [17]García-Gutiérrez M C,Linares A,Hernández J J,Rueda D R,Ezquerra T A,Poza P,Davies R J 2010 Nano Lett.10 1472
    [18]Jongh P E D,Eggenhuisen T M 2013 Adv.Mater.256672
    [19]Dujardin E,Ebbesen T W,Hiura H,Tanigaki K 1994Science 265 1850
    [20]Wang H J,Xi X K,Kleinhammes A,Wu Y 2008 Science322 80
    [21]Chen J Y,Kutana A,Collier C P,Giapis K P 2005 Science 310 1480
    [22]Alexiadis A,Kassinos S 2008 Chem.Rev.108 5014
    [23]Hummer G,Rasaiah J C,Noworyta J P 2001 Nature414 188
    [24]Werder T,Walther J H,Jaffe R L,Halicioglu T,Noca F,Koumoutsakos P 2001 Nano Lett.1 697
    [25]Whitby M,Quirke N 2007 Nat.Nanotechnol.2 87
    [26]Secchi E,Marbach S,Niguès A,Stein D,Siria A,Bocquet L 2016 Nature 537 210
    [27]Zeng H,Wu K,Cui X,Chen Z 2017 Nano Today 16 7
    [28]Huang D M,Sendner C,Horinek D,Netz R R,Bocquet L 2008 Phys.Rev.Lett.101 226101
    [29]Thomas J A,McGaughey A J H 2009 Phys.Rev.Lett.102 184502
    [30]Yuan Q,Zhao Y P 2009 J.Am.Chem.Soc.131 6374
    [31]Barber A H,Cohen S R,Wagner H D 2004 Phys.Rev.Lett.92 186103
    [32]Cao D,Pang P,He J,Luo T,Park J H,Krstic P,Nuckolls C,Tang J,Lindsay S 2011 ACS Nano 5 3113
    [33]Gogotsi Y,Libera J A,Güven?-Yazicioglu A,Megaridis C M 2001 Appl.Phys.Lett.79 1021
    [34]Monthioux M 2002 Carbon 40 1809
    [35]Siria A,Poncharal P,Biance A L,Fulcrand R,Blase X,Purcell S T,Bocquet L 2013 Nature 494 455
    [36]Pham T,Fathalizadeh A,Shevitski B,Turner S,Aloni S,Zettl A 2016 Nano Lett.16 320
    [37]Xiao K,Zhou Y,Kong X Y,Xie G,Li P,Zhang Z,Wen L,Jiang L 2016 ACS Nano 10 9703
    [38]Powell M R,Cleary L,Davenport M,Shea K J,Siwy ZS 2011 Nat.Nanotechnol.6 798
    [39]Cepak V M,Martin C R 1999 Chem.Mater.11 1363
    [40]Steinhart M,Murano S,Schaper A K,Ogawa T,Tsuji M,G?sele U,Weder C,Wendorff J H 2005 Adv.Funct.Mater.15 1656
    [41]Mei S,Feng X,Jin Z 2011 Macromolecules 44 1615
    [42]Zhang M,Dobriyal P,Chen J T,Russell T P,Olmo J,Merry A 2006 Nano Lett.6 1075
    [43]Smirnov S N,Vlassiouk I V,Lavrik N V 2011 ACS Nano5 7453
    [44]Neek-Amal M,Peeters F M,Grigorieva I V,Geim A K2016 ACS Nano 10 3685
    [45]Li X,Ren H,Wu W,Li H,Wang L,He Y,Wang J,Zhou Y 2015 Sci.Rep.5 15190
    [46]Moeremans B,Cheng H W,Hu Q,Garces H F,Padture N P,Renner F U,Valtiner M 2016 Nat.Commun.712693
    [47]Bampoulis P,Witteveen J P,Kooij E S,Lohse D,Poelsema B,Zandvliet H J W 2016 ACS Nano 10 6762
    [48]Raviv U,Laurat P,Klein J 2001 Nature 413 51
    [49]Raviv U,Klein J 2002 Science 297 1540
    [50]Leng Y,Cummings P T 2005 Phys.Rev.Lett.94 026101
    [51]Verdaguer A,Sacha G M,Bluhm H,Salmeron M 2006Chem.Rev.106 1478
    [52]Nair R R,Wu H A,Jayaram P N,Grigorieva I V,Geim A K 2012 Science 335 442
    [53]Liu J,Wang N,Yu L J,Karton A,Li W,Zhang W,Guo F,Hou L,Cheng Q,Jiang L,Weitz D A,Zhao Y 2017Nat.Commun.8 2011
    [54]Lin D,Liu Y,Liang Z,Lee H W,Sun J,Wang H,Yan K,Xie J,Cui Y 2016 Nat.Nanotechnol.11 626
    [55]Lin D,Liu Y,Cui Y 2017 Nat.Nanotechnol.12 194
    [56]Soldano C 2015 Prog.Mater.Sci.69 183
    [57]Liu Q,Zou R,Bando Y,Golberg D,Hu J 2015 Prog.Mater.Sci.70 1
    [58]Zhou Y,Guo W,Jiang L 2014 Sci.China:Phys.Mech.Astron.57 836
    [59]Holt J K 2009 Adv.Mater.21 3542
    [60]Mattia D,Gogotsi Y 2008 Microfluid.Nanofluid.5 289
    [61]Ye X R,Lin Y,Wang C,Wai C M 2003 Adv.Mater.15316
    [62]Tessonnier J P,Ersen O,Weinberg G,Pham-Huu C,Su D S,Schl?gl R 2009 ACS Nano 3 2081
    [63]Zhang J,Müller J O,Zheng W,Wang D,Su D,Schl?gl R 2008 Nano Lett.8 2738
    [64]Baaziz W,Florea I,Moldovan S,Papaefthimiou V,Zafeiratos S,Begin-Colin S,Begin D,Ersen O,PhamHuu C 2015 J.Mater.Chem.A 3 11203
    [65]Serp P,Castillejos E 2010 ChemCatChem 2 41
    [66]Liu X,Marangon I,Melinte G,Wilhelm C,MénardMoyon C,Pichon B P,Ersen O,Aubertin K,Baaziz W,Pham-Huu C,Bégin-Colin S,Bianco A,Gazeau F,Bégin D 2014 ACS Nano 8 11290
    [67]Korneva G,Ye H,Gogotsi Y,Halverson D,Friedman G,Bradley J C,Kornev K G 2005 Nano Lett.5 879
    [68]Tu?ek J,Kemp K C,Kim K S,Zbo?il R 2014 ACS Nano8 7571
    [69]Ugarte D,Chatelain A,de Heer W A 1996 Science 2741897
    [70]Sloan J,Novotny M C,Bailey S R,Brown G,Xu C,Williams V C,Friedrichs S,Flahaut E,Callender RL,York A P E,Coleman K S,Green M L H,DuninBorkowski R E,Hutchison J L 2000 Chem.Phys.Lett.329 61
    [71]Chen S,Wu G,Sha M,Huang S 2007 J.Am.Chem.Soc.129 2416
    [72]Yamada Y,Takahashi K,Takata Y,Sefiane K 2016Langmuir 32 7064
    [73]Mattia D,Bau H H,Gogotsi Y 2006 Langmuir 22 1789
    [74]Mattia D,Rossi M P,Kim B M,Korneva G,Bau H H,Gogotsi Y 2006 J.Phys.Chem.B 110 9850
    [75]Zhu Z,Zheng S,Peng S,Zhao Y,Tian Y 2017 Adv.Mater.29 1703120
    [76]Ross F M 2015 Science 350 aaa9886
    [77]Israelachvili J,Min Y,Akbulut M,Alig A,Carver G,Greene W,Kristiansen K,Meyer E,Pesika N,Rosenberg K,Zeng H 2010 Rep.Prog.Phys.73 036601
    [78]Sch?ffel D,Koynov K,Vollmer D,Butt H J,Sch?necker C 2016 Phys.Rev.Lett.116 134501
    [79]Kondrat S,Wu P,Qiao R,Kornyshev A A 2014 Nat.Mater.13 387
    [80]Liu M,Wang S,Jiang L 2017 Nat.Rev.Mater.2 17036
    [81]Fang R,Liu M,Liu H,Jiang L 2018 Adv.Mater.Interfaces 5 1701176
    [82]Kapitza P 1938 Nature 141 74
    [83]Allen J F,Misener A D 1938 Nature 141 75
    [84]Allen J F,Misener A D 1939 Proc.R.Soc.Lond.A 172467
    [85]Gasparini F M,Kimball M O,Mooney K P,Diaz-Avila M 2008 Rev.Mod.Phys.80 1009
    [86]Sansom M S P,Shrivastava I H,Bright J N,Tate J,Capener C E,Biggin P C 2002 Biochim.Biophys.Acta:Biomembr.1565 294
    [87]Majumder M,Chopra N,Andrews R,Hinds B J 2005Nature 438 44
    [88]Doyle D A,Cabral J M,Pfuetzner R A,Kuo A,Gulbis J M,Cohen S L,Chait B T,MacKinnon R 1998 Science280 69
    [89]MacKinnon R 2004 Angew.Chem.Int.Ed.43 4265
    [90]Shi C,He Y,Hendriks K,de Groot B L,Cai X,Tian C,Lange A,Sun H 2018 Nat.Commun.9 717
    [91]Tadross M R,Dick I E,Yue D T 2008 Cell 133 1228
    [92]Wen L,Zhang X,Tian Y,Jiang L 2018 Sci.China:Mater.61 1027
    [93]Zhang X,Liu H,Jiang L 2018 Adv.Mater.180 4508
    [94]Chen S,Tang Y,Zhan K,Sun D,Hou X 2018 Nano Today 20 84
    [95]Zhu Y,Zhan K,Hou X 2018 ACS Nano 12 908
    [96]Hou X 2016 Adv.Mater.28 7049
    [97]Zhang H,Hou X,Hou J,Zeng L,Tian Y,Li L,Jiang L2015 Adv.Funct.Mater.25 1102
    [98]Zhang H,Tian Y,Hou J,Hou X,Hou G,Ou R,Wang H,Jiang L 2015 ACS Nano 9 12264
    [99]Hou X,Zhang H,Jiang L 2012 Angew.Chem.Int.Ed.51 5296
    [100]Xiao K,Xie G,Zhang Z,Kong X Y,Liu Q,Li P,Wen L,Jiang L 2016 Adv.Mater.28 3345
    [101]Duan C,Majumdar A 2010 Nat.Nanotechnol.5 848
    [102]Maier J 2005 Nat.Mater.4 805
    [103]Yang X,Cheng C,Wang Y,Qiu L,Li D 2013 Science341 534
    [104]Ji X,Lee K T,Nazar L F 2009 Nat.Mater.8 500
    [105]Pan Y,Zhou Y,Zhao Q,Dou Y,Chou S,Cheng F,Chen J,Liu H K,Jiang L,Dou S X 2017 Nano Energy 33 205
    [106]Joshi R K,Carbone P,Wang F C,Kravets V G,Su Y,Grigorieva I V,Wu H A,Geim A K,Nair R R 2014Science 343 752
    [107]Wu K,Chen Z,Li J,Li X,Xu J,Dong X 2017 Proc.Natl.Acad.Sci.U.S.A.114 3358
    [108]Tian Y,Jiang L 2013 Nat.Mater.12 291
    [109]Vogler E A 1998 Adv.Colloid Interface Sci.74 69
    [110]Chen Q,Meng L,Li Q,Wang D,Guo W,Shuai Z,Jiang L 2011 Small 7 2225
    [111]Yang Q,Su Y,Chi C,Cherian C T,Huang K,Kravets V G,Wang F C,Zhang J C,Pratt A,Grigorenko A N,Guinea F,Geim A K,Nair R R 2017 Nat.Mater.161198
    [112]Zhu Z,Tian Y,Chen Y,Gu Z,Wang S,Jiang L 2017Angew.Chem.Int.Ed.129 5814
    [113]Bolhuis P G,Chandler D 2000 J.Chem.Phys.113 8154
    [114]Kalra A,Garde S,Hummer G 2003 Proc.Natl.Acad.Sci.U.S.A.100 10175
    [115]Pascal T A,Goddard W A,Jung Y 2011 Proc.Natl.Acad.Sci.U.S.A.108 11794
    [116]Mashl R J,Joseph S,Aluru N R,Jakobsson E 2003 Nano Lett.3 589
    [117]Chaban V V,Prezhdo O V 2011 ACS Nano 5 5647
    [118]Chaban V V,Prezhdo V V,Prezhdo O V 2012 ACSNano 6 2766
    [119]Melillo M,Zhu F,Snyder M A,Mittal J 2011 J.Phys.Chem.Lett.2 2978
    [120]Holt J K,Park H G,Wang Y,Stadermann M,Artyukhin A B,Grigoropoulos C P,Noy A,Bakajin O 2006 Science312 1034
    [121]Joseph S,Aluru N R 2008 Nano Lett.8 452
    [122]Thomas J A,McGaughey A J H 2008 Nano Lett.8 2788
    [123]Chen X,Cao G,Han A,Punyamurtula V K,Liu L,Culligan P J,Kim T,Qiao Y 2008 Nano Lett.8 2988
    [124]Trick J L,Song C,Wallace E J,Sansom M S P 2017ACS Nano 11 1840
    [125]Bratko D,Daub C D,Leung K,Luzar A 2007 J.Am.Chem.Soc.129 2504
    [126]Lu D 2013 Phys.Chem.Chem.Phys.15 14447
    [127]Chaban V V,Prezhdo O V 2014 ACS Nano 8 8190
    [128]Schebarchov D,Hendy S C 2008 Nano Lett.8 2253
    [129]Rossi M P,Ye H,Gogotsi Y,Babu S,Ndungu P,Bradley J C 2004 Nano Lett.4 989
    [130]Naguib N,Ye H,Gogotsi Y,Yazicioglu A G,Megaridis C M,Yoshimura M 2004 Nano Lett.4 2237
    [131]Ohba T 2014 Angew.Chem.Int.Ed.53 8032
    [132]Kolesnikov A I,Zanotti J M,Loong C K,Thiyagarajan P,Moravsky A P,Loutfy R O,Burnham C J 2004 Phys.Rev.Lett.93 035503
    [133]Tomo Y,Askounis A,Ikuta T,Takata Y,Sefiane K,Takahashi K 2018 Nano Lett.18 1869
    [134]Lech F J,Wierenga P A,Gruppen H,Meinders M B J2015 Langmuir 31 2777
    [135]Matsuda K,Hibi T,Kadowaki H,Kataura H,Maniwa Y 2006 Phys.Rev.B 74 073415
    [136]Rant U 2011 Nat.Nanotechnol.6 759
    [137]Xie G,Li P,Zhao Z,Zhu Z,Kong X Y,Zhang Z,Xiao K,Wen L,Jiang L 2018 J.Am.Chem.Soc.140 4552
    [138]Park H G,Jung Y 2014 Chem.Soc.Rev.43 565
    [139]Liu H,He J,Tang J,Liu H,Pang P,Cao D,Krstic P,Joseph S,Lindsay S,Nuckolls C 2010 Science 327 64
    [140]Geng J,Kim K,Zhang J,Escalada A,Tunuguntla R,Comolli L R,Allen F I,Shnyrova A V,Cho K R,Munoz D,Wang Y M,Grigoropoulos C P,Ajo-Franklin C M,Frolov V A,Noy A 2014 Nature 514 612
    [141]Bocquet L,Charlaix E 2010 Chem.Soc.Rev.39 1073
    [142]Guo S,Meshot E R,Kuykendall T,Cabrini S,Fornasiero F 2015 Adv.Mater.27 5726
    [143]Mattia D,Leese H,Lee K P 2015 J.Membr.Sci.475266
    [144]Whitby M,Cagnon L,Thanou M,Quirke N 2008 Nano Lett.8 2632
    [145]Qin X,Yuan Q,Zhao Y,Xie S,Liu Z 2011 Nano Lett.11 2173
    [146]Liu Q,Xiao K,Wen L,Lu H,Liu Y,Kong X Y,Xie G,Zhang Z,Bo Z,Jiang L 2015 J.Am.Chem.Soc.13711976
    [147]Xie G,Xiao K,Zhang Z,Kong X Y,Liu Q,Li P,Wen L,Jiang L 2015 Angew.Chem.Int.Ed.54 13664
    [148]Tunuguntla R H,Henley R Y,Yao Y C,Pham T A,Wanunu M,Noy A 2017 Science 357 792
    [149]Pennathur S,Santiago J G 2005 Anal.Chem.77 6772
    [150]Si W,Chen L,Hu X B,Tang G,Chen Z,Hou J L,Li ZT 2011 Angew.Chem.123 12772
    [151]Lee C,Li Q,Kalb W,Liu X Z,Berger H,Carpick R W,Hone J 2010 Science 328 76
    [152]Prakash S,Piruska A,Gatimu E N,Bohn P W,Sweedler J V,Shannon M A 2008 IEEE Sens.J.8 441
    [153]Schneider G F,Kowalczyk S W,Calado V E,Pandraud G,Zandbergen H W,Vandersypen L M K,Dekker C2010 Nano Lett.10 3163
    [154]Xiong W,Liu H,Zhou Y,Ding Y,Zhang X,Jiang L2016 ACS Appl.Mater.Interfaces 8 12534
    [155]Zhang P,Zhang F,Zhao C,Wang S,Liu M,Jiang L2016 Angew.Chem.Int.Ed.128 3679
    [156]Granick S 1991 Science 253 1374
    [157]Fumagalli L,Esfandiar A,Fabregas R,Hu S,Ares P,Janardanan A,Yang Q,Radha B,Taniguchi T,Watanabe K,Gomila G,Novoselov K S,Geim A K 2018 Science360 1339
    [158]Jiang X,Gao H,Zhang X,Pang J,Li Y,Li K,Wu Y,Li S,Zhu J,Wei Y,Jiang L 2018 Nat.Commun.9 3799
    [159]Chang L,Zhang X,Ding Y,Liu H,Liu M,Jiang L 2018ACS Appl.Mater.Interfaces 10 29010
    [160]Sha M,Wu G,Liu Y,Tang Z,Fang H 2009 J.Phys.Chem.C 113 4618
    [161]Huang K,Liu G,Shen J,Chu Z,Zhou H,Gu X,Jin W,Xu N 2015 Adv.Funct.Mater.25 5809
    [162]Huang H,Song Z,Wei N,Shi L,Mao Y,Ying Y,Sun L,Xu Z,Peng X 2013 Nat.Commun.4 2979
    [163]Han Y,Xu Z,Gao C 2013 Adv.Funct.Mater.23 3693
    [164]Mi B 2014 Science 343 740
    [165]Surwade S P,Smirnov S N,Vlassiouk I V,Unocic R R,Veith G M,Dai S,Mahurin S M 2015 Nat.Nanotech.10 459
    [166]Liu H,Wang H,Zhang X 2015 Adv.Mater.27 249
    [167]Chen W,Fan Z,Pan X,Bao X 2008 J.Am.Chem.Soc.130 9414
    [168]Guan Z,Lu S,Li C 2014 J.Catal.311 1
    [169]Gao Z,Dong M,Wang G,Sheng P,Wu Z,Yang H,Zhang B,Wang G,Wang J,Qin Y 2015 Angew.Chem.Int.Ed.54 9006
    [170]Ge H,Zhang B,Gu X,Liang H,Yang H,Gao Z,Wang J,Qin Y 2016 Angew.Chem.Int.Ed.55 7081
    [171]Zhang J,Yu Z,Gao Z,Ge H,Zhao S,Chen C,Chen S,Tong X,Wang M,Zheng Z,Qin Y 2017 Angew.Chem.Int.Ed.56 816
    [172]Kageyama K,Tamazawa J I,Aida T 1999 Science 2852113
    [173]Feng K,Zhang R Y,Wu L Z,Tu B,Peng M L,Zhang L P,Zhao D,Tung C H 2006 J.Am.Chem.Soc.12814685
    [174]Trépanier M,Tavasoli A,Dalai A K,Abatzoglou N 2009Appl.Catal.A 353 193
    [175]Yue H,Zhao Y,Zhao S,Wang B,Ma X,Gong J 2013Nat.Commun.4 2339
    [176]Mu R,Fu Q,Jin L,Yu L,Fang G,Tan D,Bao X 2012Angew.Chem.Int.Ed.51 4856
    [177]Tung C H,Wang H,Ying Y M 1998 J.Am.Chem.Soc.120 5179
    [178]Zhu H,Xiao C,Cheng H,Grote F,Zhang X,Yao T,Li Z,Wang C,Wei S,Lei Y,Xie Y 2014 Nat.Commun.53960
    [179]Tung C H,Wu L Z,Yuan Z Y,Su N 1998 J.Am.Chem.Soc.120 11594
    [180]Tung C H,Guan J Q 1998 J.Am.Chem.Soc.120 11874
    [181]Chu A,Cook J,Heesom R J R,Hutchison J L,Green M L H,Sloan J 1996 Chem.Mater.8 2751
    [182]Zhou W,Li T,Wang J,Qu Y,Pan K,Xie Y,Tian G,Wang L,Ren Z,Jiang B,Fu H 2014 Nano Res.7 731
    [183]Fang J,Zhang L,Li J,Lu L,Ma C,Cheng S,Li Z,Xiong Q,You H 2018 Nat.Commun.9 521
    [184]Cauda V,Stassi S,Bejtka K,Canavese G 2013 ACSAppl.Mater.Interfaces 5 6430
    [185]Lee C W,Wei T H,Chang C W,Chen J T 2012 Macromol.Rapid Commun.33 1381
    [186]Garcia-Gutierrez M C,Linares A,Martin-Fabiani I,Hernandez J J,Soccio M,Rueda D R,Ezquerra T A,Reynolds M 2013 Nanoscale 5 6006
    [187]Chen J,Wu D,Walter E,Engelhard M,Bhattacharya P,Pan H,Shao Y,Gao F,Xiao J,Liu J 2015 Nano Energy13 267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700