油菜及其近缘植物形态标记性状基因定位与克隆研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in location and cloning of morphological marker traits genes in rapeseed and its related plants
  • 作者:杨柳 ; 康雷 ; 刘忠松
  • 英文作者:YANG Liu;KANG Lei;LIU Zhongsong;
  • 关键词:油菜 ; 近缘种 ; 形态标记 ; 基因定位 ; 基因克隆
  • 中文刊名:ZWYJ
  • 英文刊名:Crop Research
  • 机构:湖南农业大学农学院;
  • 出版日期:2019-01-20 07:00
  • 出版单位:作物研究
  • 年:2019
  • 期:v.33;No.158
  • 基金:国家自然科学基金项目(31571712)
  • 语种:中文;
  • 页:ZWYJ201901018
  • 页数:7
  • CN:01
  • ISSN:43-1110/S
  • 分类号:74-80
摘要
形态标记不仅在品种选育、种子生产和纯度鉴定时作为指示性状,而且与作物的产量、品质和抗性相关。综述了近年在油菜叶色、叶面蜡粉、叶型、矮秆、花色、种子颜色和多室等7个标记性状上的基因定位和克隆研究进展,发现往往有多个基因通过同一代谢途径或不同代谢途径控制同一性状,异源四倍体的油菜、芥菜控制性状的基因数目一般是其祖先亲本种白菜、甘蓝的2倍,在相同的染色体或同源区段能找到同源基因。这些研究成果既为更多性状的基因定位克隆提供了借鉴,也为通过基因编辑等手段创制具有特殊标记性状的新种质提供了可选择的靶标位点。
        
引文
[1]吴新杰,陈凤祥,胡宝成,等.甘蓝型油菜形态标记性状研究进展[J].中国农学通报,2005,21:128-131.
    [2]刘忠松.不同用途油菜对品种特性的基本要求[J].作物研究,2017,31:623-625.
    [3] Jeon J,Lim CJ,Kim JK,et al. Comparative metabolic profiling of green and purple pakchoi(Brassica rapa subsp.chinensis)[J]. Molecules,2018,23(7):doi:10. 3390/molecules23071613.
    [4] Zhang F,Wang G,Wang M,et al. Identification of SCAR markers linked to or,a gene inducing beta-carotene accumulation in Chinese cabbage[J]. Euphytica,2008,164(2):463-471.
    [5] Xie L,Li F,Zhang S,et al. Mining for Candidate genes in an introgression line by using RNA sequencing:The anthocyanin overaccumulation phenotype in Brassica[J].Frontiers in Plant Science,2016,7:1245.
    [6] Zhang S,Li P,Qian W,et al. Mapping and expression profiling reveal an inserted fragment from purple mustard involved anthocyanin accumulation in Chinese cabbage[J]. Euphytica,2016,212:83-95.
    [7] Li H,Zhu L,Yuan G,et al. Fine mapping and candidate gene analysis of an anthocyanin-rich gene,Bna A. PL1,conferring purple leaves in Brassica napus L[J]. Mol Genet Genomics,2016,291:1523-1534.
    [8] Yang JH,Ji CM,Liu DY,et al. Reply to:'Organization of the genome sequence of the polyploid crop species Brassica juncea'[J]. Nat Genet,2018,50:1497-1498.
    [9] Zhao Z,Xiao L,Xu L,et al. Fine mapping the Bj Pl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing[J]. Euphytica,2017,213:80.
    [10] Wang W,Zhang D,Yu S,et al. Mapping the Br Pur gene for purple leaf color on linkage group A03 of Brassica rapa[J]. Euphytica,2014,199:293-302.
    [11] Wendell DL,Vaziri A,Shergill G. The gene encoding dihydroflavonol 4-reductase is a candidate for the anthocyaninless locus of rapid cycling Brassica rapa(fast plants type)[J]. PLo S One,2016,11(8):e0161394.
    [12] Guo N,Wu J,Zheng S,et al. Anthocyanin profile characterization and quantitative trait locus mapping in Zicaitai(Brassica rapa L. ssp. chinensis var. Purpurea)[J].Mol Breeding,2015,35:1-11.
    [13] Zhu P,Cheng M,Feng X,et al. Mapping of Pi,a gene conferring pink leaf in ornamental kale(Brassica oleracea L. var. acephala DC)[J]. Euphytica,2016,207:377-385.
    [14] Yan C,An G,Zhu T,et al. Independent activation of the Bo MYB2 gene leading to purple traits in Brassica oleracea[J]. Theor Appl Genet,2018,doi:10. 1007/s00122-018-3245-9.
    [15] Chiu LW,Zhou X,Burke S,et al. The purple cauliflower arises from activation of a MYB transcription factor[J].Plant Physiol,2010,154:1470-1480.
    [16] Song H,Yi H,Lee M,et al. Purple Brassica oleracea var.capitata F. rubra is due to the loss of Bo MYBL2-1 expression[J]. BMC Plant Biol,2018,18(1):82.
    [17] Ren J,Liu Z,Niu R,et al. Mapping of Re,a gene conferring the red leaf trait in ornamental kale(Brassica oleracea L. var. acephala)[J]. Plant Breeding,2015,134:494-500.
    [18] Liu XP,Gao BZ,Han FQ,et al. Genetics and fine mapping of a purple leaf gene,Bo Pr,in ornamental kale(Brassica oleracea L. var. acephala)[J]. BMC Genomics,2017,18(1):230.
    [19] Tang Q,Tian M,An G,et al. Rapid identification of the purple stem(Ps)gene of Chinese kale(Brassica oleracea var. alboglabra)in a segregation distortion population by bulked segregant analysis and RNA sequencing[J]. Mol Breeding,2017,37:153.
    [20] Lin LZ,Sun J,Chen P,et al. UHPLC-PDA-ESI/HRMS/MS(n)analysis of anthocyanins,flavonol glycosides,and hydroxycinnamic acid derivatives in red mustard greens(Brassica juncea Coss variety)[J]. J Agric Food Chem,2011,59:12059-12072.
    [21] Xie Q,Hu Z,Zhang Y,et al. Accumulation and molecular regulation of anthocyanin in purple tumorous stem mustard(Brassica juncea var. tumida Tsen et Lee)[J]. J Agric Food Chem,2014,62:7813-7821.
    [22] Zhang Y,Chen G,Dong T,et al. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy(Brassica rapa var. chinensis)[J]. J Agric Food Chem,2014,62:12366-12376.
    [23] Mushtaq MA,Pan Q,Chen D,et al. Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in Brassica:Molecular regulation and potential interaction with photosynthesis[J]. Front Plant Sci,2016,7:311.
    [24] Liu X,Lu Y,Yan M,et al. Genome-wide identification,localization,and expression analysis of proanthocyanidin-associated genes in Brassica[J]. Front Plant Sci,2016,7:1831.
    [25] Feng H,Li Y,Liu Z,et al. Mapping of or,a gene conferring orange color on the inner leaf of the Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Mol Breeding,2012,29:235-244.
    [26] Zhang J,Li H,Zhang M,et al. Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Mol Breeding,2013,32(4):799-805.
    [27] Lee S,Lee SC,Byun DH,et al. Association of molecular markers derived from the Br CRISTO1 gene with prolycopene-enriched orange-colored leaves in Brassica rapa[J]. Theor Appl Genet,2014,127:179-191.
    [28] Li P,Zhang S,Zhang S,et al. Carotenoid identification and molecular analysis of carotenoid isomerase-encoding Br CRTISO,the candidate gene for inner leaf orange coloration in Chinese cabbage[J]. Mol Breeding,2015,35:72.
    [29] Su T,Yu S,Wang J,et al. Loss of function of the carotenoid isomerase gene Br CRTISO confers orange color to the inner leaves of Chinese cabbage(Brassica rapa L.ssp. pekinensis)[J]. Plant Mol Biol Rep,2015,33:648
    [30] Tang X,Wang Y,Zhang Y,et al. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage(Brassica campestris ssp. pekinensis)[J]. BMC Plant Biol,2018,18:130.
    [31] Liu X,Yang C,Han F,et al. Genetics and fine mapping of a yellow-green leaf gene(ygl-1)in cabbage(Brassica oleracea var. capitata L.)[J]. Mol Breeding,2016,36:82.
    [32] Zhu L,Zeng X,Chen Y,et al. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant(Bna C. ygl)in Brassica napus[J]. Mol Breeding,2014,34:603-614.
    [33] Zhu L,Yang Z,Zeng X,et al. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus[J]. Plant Mol Biol,2017,93:579-592.
    [34] Wang Y,He Y,Yang M,et al. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus[J]. Sci Rep,2016,6:31419.
    [35] Choi SR,Yu X,Dhandapani V,et al. Integrated analysis of leaf morphological and color traits in different populations of Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. Theor Appl Genet,2017,130:1617-1634.
    [36] Tassone EE,Lipka AE,Tomasi P,et al. Chemical Variation for leaf cuticular waxes and their levels revealed in a diverse panel of Brassica napus L[J]. Indust Crops Prod,2016,79:77-83.
    [37] Branham SE,Farnham MW. Genotyping-by-sequencing of waxy and glossy near-isogenic broccoli lines[J]. Euphytica,2017,213:84.
    [38] Pu Y,Gao J,Guo Y,et al. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus[J]. BMC Plant Biol,2013,13:215.
    [39] Zhang X,Liu Z,Wang P,et al. Fine mapping of Br Wax1,a gene controlling cuticular wax biosynthesis in Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Mol Breeding,2013,32:867-874.
    [40] Wang C,Li Y,Xie F,et al. Cloning of the Brcer1 gene involved in cuticular wax production in a glossy mutant of non-heading Chinese cabbage(Brassica rapa L. var.communis)[J]. Mol Breeding,2017,37:142.
    [41] Liu D,Tang J,Liu Z,et al. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage(Brassica oleracea L. var. capitata)[J]. BMC Plant Biol,2017,17:223.
    [42] Liu D,Dong X,Liu Z,et al. Fine mapping and candidate gene identification for wax biosynthesis locus,Bo Wax1 in Brassica oleracea L. var. capitata[J]. Front Plant Sci,2018,9:309.
    [43] Liu Z,Fang Z,Zhuang M,et al. Fine-mapping and analysis of Cgl1,a gene conferring glossy trait in cabbage(Brassica oleracea L. var. capitata)[J]. Front Plant Sci,2017,8:239.
    [44] Liu D,Tang J,Liu Z,et al. Fine mapping of Bo GL1,a gene controlling the glossy green trait in cabbage(Brassica oleracea L. var. capitata)[J]. Mol Breeding,2017,37:69.
    [45] Ji J,Cao W,Dong X,et al. A 252-bp insertion in BoCER1 is responsible for the glossy phenotype in cabbage(Brassica oleracea L. var. capitata)[J]. Mol Breeding,2018,38:128.
    [46] Bernard A,Joubès J. Arabidopsis cuticular waxes:Advances in synthesis,export and regulation[J]. Prog Lipid Res,2013,52:110-129.
    [47]周燕,黄小虎,许代香,等.甘蓝型油菜蜡质相关基因的克隆与表达分析[J].农业生物技术学报,2017,25:1918-1929.
    [48] Ni X,Huang J,Ali B,et al. Genetic analysis and fine mapping of the LOBED-LEAF 1(Bn LL1)gene in rapeseed(Brassica napus L.)[J]. Euphytica,2015,204:29-38.
    [49] Hu L,Zhang H,Yang Q,et al. Promoter variations in a homeobox gene,Bn A10. LMI1,determine lobed leaves in rapeseed(Brassica napus L.)[J]. Theor Appl Genet,2018,131:2699-2708.
    [50] Xiao D,Wang H,Basnet RK,et al. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach[J]. Plant Physiol,2014,164:1309-1325.
    [51] Li H,Li J,Song J,et al. An auxin signaling gene Bna A3. IAA7 contributes to improved plant architecture and yield heterosis in rapeseed[J]. New Phytol,2018,doi:10. 1111/nph. 15632.
    [52] Li H,Wang Y,Li X,et al. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1[J]. Mol Biol Rep,2011,38:191-197.
    [53] Muangprom A,Osborn TC. Characterization of a dwarf gene in Brassica rapa,including the identification of a candidate gene[J]. Theor Appl Genet,2004,108:1378-1384.
    [54] Muangprom A,Thomas SG,Sun TP,et al. A novel dwarfing mutation in a green revolution gene from Brassica rapa[J]. Plant Physiol,2005,37:931-938.
    [55] Foisset N,Delourme R,Barret P,et al. Molecular tagging of the dwarf BREIZH(Bzh)gene in Brassica napus[J].Theor Appl Genet,1995,91:756-761.
    [56] Liu C,Wang J,Huang T,et al. A missense mutation in the VHYNP motif of a DELLA protein causes a semidwarf mutant phenotype in Brassica napus[J]. Theor Appl Genet,2010,121:249-258.
    [57] Zeng X,Zhu L,Chen Y,et al. Identification,fine mapping and characterisation of a dwarf mutant(Bna C. dwf)in Brassica napus[J]. Theor Appl Genet,2011,122:421-428.
    [58] Wang Y,He J,Yang L,et al. Fine mapping of a major locus controlling plant height using a high-density single-nucleotide polymorphism map in Brassica napus[J].Theor Appl Genet,2016,129:1479-1491.
    [59] Zhao B,Li H,Li J,et al. Brassica napus DS-3,encoding a DELLA protein,negatively regulates stem elongation through gibberellin signaling pathway[J]. Theor Appl Genet,2017,130:727-741.
    [60] Li K,Yao Y,Xiao L,et al. Fine mapping of the Brassica napus Bnsdt1 gene associated with determinate growth habit[J]. Theor Appl Genet,2018,131:193-208.
    [61]张尧锋,张冬青,余华胜,等.基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位[J].中国农业科学,2018,51:3029-3039.
    [62]张江江,詹杰鹏,刘清云,等.油菜株高QTL定位、整合和候选基因鉴定[J].中国农业科学,2017,50:3247-3258.
    [63] Wessinger CA. A genetic route to yellow flowers[J].New Phytol,2015,206:1193-1195.
    [64] Yao Y,Li K,Liu H,et al. Whole-genome re-sequencing and fine mapping of an orange petal color gene(Bnpc1)in spring Brassica napus L. to a 151-kb region[J]. Euphytica,2017,213:165.
    [65] Han F,Yang C,Fang Z,et al. Inheritance and In Del markers closely linked to petal color gene(cpc-1)in Brassica oleracea[J]. Mol Breeding,2015,35:160.
    [66] Zhang B,Liu C,Wang Y,et al. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species[J]. New Phytol,2015,206:1513-1526.
    [67] Zhang X,Li R,Chen L,et al. Inheritance and gene mapping of the white flower trait in Brassica juncea[J]. Mol Breeding,2018,38:20.
    [68] Zhang X,Li R,Chen L,et al. Fine-mapping and candidate gene analysis of the Brassica juncea white-flowered mutant Bjpc2 using the whole-genome resequencing[J]. Mol Genet Genomics,2018,293:359-370.
    [69] Zhang J,Lu Y,Yuan Y,et al. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa[J]. Plant Mol Biol,2009,69:553-563.
    [70] Ren Y,He Q,Ma X,et al. Characteristics of color development in seeds of brown-and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc,the candidate gene controlling seed coat color[J]. Front Plant Sci,2017,8:1410.
    [71] Li X,Chen L,Hong M,et al. A large insertion in b HLH transcription factor Br TT8 resulting in yellow seed coat in Brassica rapa[J]. PLo S One,2012,7(9):e44145.
    [72] Kebede B,Cheema K,Greenshields DL,et al. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa[J]. Genome,2012,55:813-823.
    [73] Wang Y,Xiao L,Guo S,et al. Fine Mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa[J]. PLo S One,2016,11(11):e0166464.
    [74]刘显军,袁谋志,官春云,等.芥菜型油菜黄籽性状的遗传、基因定位和起源探讨[J].作物学报,2009,35:839-847.
    [75] Padmaja LK,Agarwal P,Gupta V,et al. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB)[J].Theor Appl Genet,2014,127:339-347.
    [76] Fan C,Wu Y,Yang Q,et al. A novel single-nucleotide mutation in a CLAVATA3 gene homologue controls a multilocular silique trait in Brassica rapa L[J]. Mol Plant,2014,7:1788-1792.
    [77] Yadava SK,Paritosh K,Panjabi-Massand P,et al. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa(subspecies trilocularis)are due to a mutation in Bra034340 gene,a homologue of CLAVATA3in Arabidopsis[J]. Theor Appl Genet,2014,127:2359-2369.
    [78] Xu P,Cao S,Hu K,et al. Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1gene homologue(Bj Mc1)transcription[J]. Sci Rep,2017,7:3498.
    [79] Xiao L,Li X,Liu F,et al. Mutations in the CDS and promoter of Bju A07. CLV1 cause a multilocular trait in Brassica juncea[J]. Sci Rep,2018,8:1-13.
    [80] Chen C,Xiao L,Li X,et al. Comparative mapping combined with map-based cloning of the Brassica juncea genome reveals a candidate gene for multilocular rapeseed[J]. Front Plant Sci,2018,9:1744.
    [81] Zhang L,Cai X,Wu J,et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies[J]. Hortic Res,2018,5:50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700