大鼠股神经分支基膜管差异的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A study on the difference of basement membrane of femoral nerve branches in rats
  • 作者:魏帅 ; 程晓清 ; 王玉 ; 王维山 ; 丁晓 ; 韩公海 ; 刘平 ; 彭江 ; 史晨辉
  • 英文作者:WEI Shuai;CHENG Xiao-qing;WANG Yu;WANG Wei-shan;DING Xiao;HAN Gong-hai;LIU Ping;PENG Jiang;SHI Chen-hui;Medical School of Shihezi University;Institute of Orthopaedics, General Hospital of PLA;Orthopeadic Centre, The First Affiliated Hospital;
  • 关键词:股神经 ; 股神经肌支 ; 股神经皮支 ; 基底膜 ; 基膜管 ; 拉曼光谱
  • 英文关键词:femoral nerve;;muscle branch;;cutaneous branch;;basement membrane;;basal lamina tube;;raman spectroscopy
  • 中文刊名:ZJXS
  • 英文刊名:Orthopedic Journal of China
  • 机构:石河子大学医学院第一附属医院骨科中心;解放军总医院全军骨科研究所;
  • 出版日期:2018-12-20
  • 出版单位:中国矫形外科杂志
  • 年:2018
  • 期:v.26;No.458
  • 基金:国家973项目(编号:2014CB542201);; 国家重点研发计划项目(编号:2017YFA0104702,2016YFC1101601)
  • 语种:中文;
  • 页:ZJXS201824023
  • 页数:8
  • CN:24
  • ISSN:37-1247/R
  • 分类号:80-87
摘要
[目的]比较大鼠股神经分支基膜管结构和成分差异,为组织工程神经引导周围神经损伤后的精确再生提供依据。[方法]选取健康8周龄雄性SD大鼠30只,随机分为2组,实验组取股神经及其分支进行化学去细胞处理;对照组取新鲜股神经及其分支;观察指标为超微结构、组织学、免疫组织化学、拉曼光谱特征。[结果](1)超微结构:对照组股神经肌支髓鞘厚度大于皮支(1.28±0.41)μm vs (0.81±0.32)μm,(P<0.05),对照组股神经肌支基底膜厚度大于股神经皮支(34.55±2.23) nm vs (31.86±3.47) nm,(P<0.05);扫描电镜显示实验组去细胞处理后的取向性结构管状结构,无可见细胞结构;对照组扫描电镜显示可见明显分束的神经纤维及细胞结构;(2)组织学及免疫荧光显示:对照组股神经肌支乙酰胆碱酯酶染色阳性部位所占比例较大,皮支染色阴性部位所占比例较大;实验组去细胞处理后HE神经纤维呈均一红染管状细胞外基质结构,无蓝色可见细胞核结构;实验组神经去细胞处理后DAPI和Laminin染色为红色层粘连蛋白背景,无亮蓝色细胞核结构;(3)拉曼光谱分析显示:实验组神经去细胞处理后股神经肌支和皮支波峰出现位置无差异,主要为脂类和蛋白质及微量核酸。[结论]大鼠股神经肌支主要含运动神经纤维,皮支主要含感觉神经纤维;肌支和皮支的基膜管在结构上存在差异,其拉曼光谱特征基本相似。
        [Objective] To observe the differences in the structure and components of the basement membranes of the branches of the femoral nerves in rats, and providing evidence for the precise regeneration of tissue-engineered nerves for peripheral nerve injury. [Methods] Thirty healthy 8-week-old male Sprague-Dawley rats were randomly divided into 2 groups.The animals in the experimental group were harvested femoral nerve and its branches for chemical decellularization, while those in the control group were gathered fresh femoral nerves and their branches. The ultrastructure, histology, immunohistochemistry,and Raman spectroscopy of the samples were observed. [Results] Regarding to the ultrastructure, the thickness of the myelin sheath of the femoral muscle branch was significantly greater than that of the cutaneous branch in the fresh samples(1.28±0.41μm versus 0.81±0.32 μm, P<0.05), whereas the thickness of the basement membrane of the femoral muscle branch proved significantly greater than that of the femoral cutaneous branch in the control group(34.55±2.23 nm versus 31.86±3.47 nm, P<0.05). Scanning electron microscopy showed that the samples in the experimental group treated with decellularization was oriented tubular structure without visible cell structure, while those in the control group had obviously split nerve fibers and cell structure. In term of histological staining and immunofluorescence, the proportion of positive acetylcholinesterase staining in the femoral muscle branches was larger, while the proportion of negative sites in the cutaneous branch was larger in fresh samples of the control group. By contrast, the nerve fibers in the experimental group showed some nonnuclear structure by HE staining,whereas only the red laminin background with no bright blue cell nuclear structure presented by DAPI and Laminin staining in the experimental group. In addition, the Raman spectroscopy showed that no a difference in the peak position was noticed between the muscle branch and the cutaneous branch after decellularization in the experimental group, and the main residual components were lipids, proteins and trace nu-cleic acids. [Conclusion] There are considerable differences in the basement membrane structure between the muscular branch and cutaneous branches of the rat femoral nerve, despite of similar characteristics in Raman spectroscopy.
引文
[1]Sellaro TL,Ravindra AK,Stolz DB,et al.Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds[J].Tissue Engineering Part A,2007,13(9):2301-2310.
    [2]Cortiella J,Niles J,Cantu A,et al.Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation[J].Tissue Eng Part A,2010,16(8):2565-2580.
    [3]Zhang Y,He Y,Bharadwaj S,et al.Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype[J].Biomaterials,2009,30(23-24):4021-4028.
    [4]Carbonetto S.The extracellular matrix of the nervous system[J].Trends Neurosci,1984,7(10):382-387.
    [5]Zhang Y,Luo H,Zhang Z,et al.A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells[J].Biomaterials,2010,31(20):5312-5324.
    [6]Kemp SW,Walsh SK,Midha R.Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair[J].Neurol Res,2008,30(10):1030.
    [7]Johnson PC,Duhamel RC,Meezan E,et al.Preparation of cellfree extracellular matrix from human peripheral nerve[J].Muscle Nerve,1982,5(4):335.
    [8]Wang D,Liu X L,Zhu J K,et al.Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates[J].Brain Res,2008,1188(1):44-53.
    [9]Wang D,Liu XL,Zhu JK,et al.Repairing large radial nerve defects by acellular nerve allografts seeded with autologous bone marrow stromal cells in a monkey model[J].J Neurotrauma,2010,27(10):1935.
    [10]He B,Liu X,Zhu Q,et al.Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold:a prospecti ve,multicentre controlled clinical trial[C].Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold:a prospective,multicentre controlled clinical trial,2013首届世界健康大会.
    [11]Brushart T M,Gerber J,Kessens P,et al.Contributions of pathway and neuron to preferential motor reinnervation[J].J Neurosci,1998,18(21):8674-8681.
    [12]Martini R,Xin Y,Schmitz B,et al.The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves[J].Eur J Neurosci,1992,4(7):628-639.
    [13]Martini R,Schachner M,Brushart TM.The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves[J].J Neurosci,1994,14(11 Pt 2):7180.
    [14]H?ke A,Redett R,Hameed H,et al.Schwann cells express motor and sensory phenotypes that regulate axon regeneration[J].J Neurosci,2006,26(38):9646-9655.
    [15]Brenner MJ,Hess JR,Myckatyn TM,et al.Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats[J].Laryngoscope,2006,116(9):1685-1692.
    [16]Lago N,Rodríguez FJ,Guzmán MS,et al.Effects of motor and sensory nerve transplants on amount and specificity of sciatic nerve regeneration[J].J Neurosci Res,2007,85(12):2800-2812.
    [17]Lloyd BM,Luginbuhl RD,Brenner MJ,et al.Use of motor nerve material in peripheral nerve repair with conduits[J].Microsurgery,2007,27(2):138-145.
    [18]Robinson GA,Madison RD.Influence of terminal nerve branch size on motor neuron regeneration accuracy[J].Experi Neurol,2009,215(2):228-235.
    [19]Zilic L,Wilshaw S P,Haycock J W.Decellularisation and histological characterisation of porcine peripheral nerves[J].Biotechnol Bioeng,2016,113(9):2041-2053.
    [20]Sondell M,Lundborg G,Kanje M.Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction[J].Brain Res,1998,795(1-2):44-54.
    [21]Hudson TW,Liu SY,Schmidt CE.Engineering an improved acellular nerve graft via optimized chemical processing[J].Tissue Eng,2004,10(10):1346-1358.
    [22]Hiles R W.Freeze dried irradiated nerve homograft:a preliminary report[J].Hand,1972,4(1):79-84.
    [23]Frerichs O,Fansa H,Schicht C,et al.Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells[J].Microsurgery,2002,22(7):311.
    [24]Boriani F,Fazio N,Fotia C,et al.A novel technique for decellularization of allogenic nerves and in vivo study of their use for peripheral nerve reconstruction[J].J Biomed Mater Res Part A,2017,105(8):101-105.
    [25]Uzarski J S,Ab V D W,Mcfetridge P S.Preimplantation processing of ex vivo-derived vascular biomaterials:effects on peripheral cell adhesion[J].J Biomed Mater Res Part A,2012,101A(1):123-131.
    [26]Stone N,Kendall C,Shepherd N,et al.Near infrared Raman spectroscopy for the classification of epithelial pre cancers and cancers[J].J Raman Spectroscopy,2002,33(7):564-573.
    [27]Mahadevanjansen A,Richardskortum RR.Raman spectroscopy for the detection of cancers and precancers[J].J Biomed Optics,1996,1(1):31-70.
    [28]Kaminaka S,Ito T,Yamazaki H,et al.Nearinfrared multichannel Raman spectroscopy toward realtime in vivo cancer diagnosis[J].J Raman Spectroscopy,2002,33(7):498-502.
    [29]Yakin DE,Rogers VP.Conventional instrument vs.laser-assisted arthroscopic meniscectomy[J].Lasers Surg Med,1999,25(5):435-437.
    [30]Jr VC,Ghaderi B,Brustein M,et al.Ablation rates of human meniscal tissue with the Ho:YAG laser:the effects of varying fluences[J].Arthroscopy,1997,13(2):148-150.
    [31]Wang H,Ma F,Wang F,et al.Identification of motor and sensory fascicles in peripheral nerve trunk using immunohistochemistry and micro-Raman spectroscopy[J].J Trauma,2011,71(5):1246-1251.
    [32]Lee B,Shafiq M,Jung Y,et al.Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a co-culture system[J].Macromolecular Res,2016,24(2):131-142.
    [33]He H Y,Zhang J Y,Mi X,et al.Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study[J].Int J Clin Exp Med,2015,8(7):11777-11785.
    [34]Cui X,Breitenkamp K,Finn MG,et al.Direct human cartilage repair using three-dimensional bioprinting technology[J].Tissue Engineering Part A,2012,18(11-12):1304.
    [35]Lin T,Liu S,Chen S,et al.Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects[J].Acta Biomaterialia,2018,15(11):1209-1211.(收稿:2018-07-26)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700