瓜胶压裂液携砂微观机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic Mechanism of Proppant Carrying Capacity of Fracturing Fluid
  • 作者:何春明 ; 才博 ; 卢拥军 ; 段贵府 ; 刘哲
  • 英文作者:HE Chunming;CAI Bo;LU Yongjun;DUAN Guifu;LIU Zhe;Langfang Branch of Research Institute of Petroleum Exploration and Development,PetroChina;
  • 关键词:压裂液 ; 携砂性能 ; 黏弹性 ; 微观结构
  • 英文关键词:fracturing fluid;;proppant carrying capacity;;viscoelasticity;;microstructure
  • 中文刊名:YJHX
  • 英文刊名:Oilfield Chemistry
  • 机构:中国石油勘探开发研究院廊坊分院;
  • 出版日期:2015-03-25 09:54
  • 出版单位:油田化学
  • 年:2015
  • 期:v.32;No.123
  • 基金:中石油股份公司重大科技专项“特低、超低渗油藏高效改造新技术”(项目编号2014B-1202)
  • 语种:中文;
  • 页:YJHX201501008
  • 页数:5
  • CN:01
  • ISSN:51-1292/TE
  • 分类号:38-42
摘要
通过对瓜胶压裂液进行静态支撑剂沉降实验、动态黏弹性测试、屈服应力测试、分子结构表征,研究了瓜胶压裂液的宏观性能、分子结构与压裂液携砂性能间的关系。支撑剂沉降实验表明,压裂液黏度的变化与支撑剂沉降速率呈非线性关系,用黏度指标很难准确表征压裂液的携砂性能。动态黏弹性测试表明,压裂液损耗模量的增加有利于降低支撑剂沉降速率,而储能模量的大幅度提高赋予流体弹性特征,这才是支撑剂能够长时间保持均匀悬浮状态的根本原因。压裂液微观结构分析表明,压裂液基液具有杂乱、松散、多孔洞的网络堆砌结构,而交联压裂液具有均匀、紧密的整体堆砌结构,该结构赋予交联压裂液弹性,使其携砂能力发生本质变化。
        The relationship between macroscopic properties of fracturing fluid,molecular microstructure and fracturing fluid proppant carrying capacity was studied through static state proppant settlement experiment,dynamic viscoelastic test,yield stress test,scanning electronic microscope observation. Proppant settlement experiments showed that a nonlinear relationship existed between the change of viscosity of fracturing fluid and proppant settling rate,which indicated that viscosity index could not characterize the carrying capacity of fracturing fluid accurately. Dynamic viscoelastic tests showed that the increase of loss modulus was favorable of reducing the rate of proppant settling,while a significant increase of storage modulus which endowed the fluid elasticity maybe the main reason for proppant keeping suspension for a long time in crosslinked fracturing fluid. Fracturing fluid microstructure analysis showed that the fracturing base fluid possessed a disorder,loose,plurilocellate,and mesh-stacked structure,while the crosslinked fracturing fluid possessed a well-distributed,close and the whole-stacked structure,endowing the elasticity of crosslinked fracturing fluid and causing a essence change of fracturing fluid proppant carrying capacity.
引文
[1]张浩.高温压裂液流变性影响因素分析[J].齐齐哈尔大学学报,2005,21(1):98-100.
    [2]周建芳,张黎明,HUI P S.两性瓜尔胶衍生物溶液的流变特征[J].物理化学学报,2003,19(11):1081-1084.
    [3]张浩,谢朝阳,韩松,等.火山岩深气层压裂液体系研究与应用[J].油田化学,2005,22(4):310-312.
    [4]WANG X L,QU Q,Mc Carthy S.Successful applications of borate crosslinked fracturing fluids at high temperature[R].SPE73789,2002.
    [5]PARRIS M,MIRAKYAN A,ABAD C.A New shear-tolerant high-temperature fracturing fluid[Z].SPE 121755,2009.
    [6]KRAMER J,PRUD'HOMME R K,CHU A.Rheological Characterization of Fracturing Fluid[Z].API-G001,1984.
    [7]ACHARYA A R.Viscoelasticity of Crosslinked Fracturing Fluid and Proppant Transport[Z].SPE 15937,1988.
    [8]NAVAL G,SUBHASH S.A rheological criterion for fracturing fluids to transport proppant during a stimulation treatment[Z].SPE 71663,2001.
    [9]朱怀江,赵常青,罗健辉,等.聚合物水化分子的微观结构研究[J].电子显微学报,2005,24(3):205-209.
    [10]ACHARYA A.Particle transport in viscous and viscoelastic fracturing fluid[Z].SPE 13179,1986.
    [11]吴其晔,巫静安.高分子材料流变学[M].高等教育出版社,2010.
    [12]郑晓松.聚合物挤液的弹性枯度理论及应用[D].大庆石油学院博士论文,2004.
    [13]李曙光,郭大立,赵金洲,等.表面活性剂压裂液机理与携砂性能研究[J].西南石油大学学报,2011,33(3):133-136.
    [14]SAHIL M.Proppant settling in viscoelastic surfactant fluid[D].Master of Science in Engineering of Texas University at Austin.
    [15]冯玉军,罗传秋,罗平亚,等.疏水缔合水溶性聚丙烯酰胺的溶液结构的研究[J].石油学报,2001,17(6):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700