用户名: 密码: 验证码:
Geochemistry of upper Permian siliceous rocks from the Lower Yangtze region, southeastern China:implications for the origin of chert and Permian ocean chemistry
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemistry of upper Permian siliceous rocks from the Lower Yangtze region, southeastern China:implications for the origin of chert and Permian ocean chemistry
  • 作者:Zhi-Wei ; Liao ; Wen-Xuan ; Hu ; Xiu-Gen ; Fu ; Zhong-Ya ; Hu
  • 英文作者:Zhi?Wei Liao;Wen?Xuan Hu;Xiu?Gen Fu;Zhong?Ya Hu;State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Resources and Environmental Science, Chongqing University;Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Mineral, Shandong University of Science and Technology;Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources;State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS);State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Institute of Energy Sciences, Nanjing University;
  • 英文关键词:Lower Yangtze region;;Da-long Formation;;Siliceous rock;;Biological chert;;Volcanism
  • 中文刊名:SYKX
  • 英文刊名:石油科学(英文版)
  • 机构:State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Resources and Environmental Science, Chongqing University;Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Mineral, Shandong University of Science and Technology;Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources;State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS);State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Institute of Energy Sciences, Nanjing University;
  • 出版日期:2019-04-15
  • 出版单位:Petroleum Science
  • 年:2019
  • 期:v.16
  • 基金:supported by the National Natural Science Foundation of China (Grant No. 41702129);; Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjAX0448);; Open Fund of Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources (Chengdu Center, CGS) (Grant No. CDCGS2018003);; State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (Grant No. 173115);; the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800115);; Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJXY240001)
  • 语种:英文;
  • 页:SYKX201902002
  • 页数:15
  • CN:02
  • ISSN:11-4995/TE
  • 分类号:26-40
摘要
The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.
        The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.
引文
Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific:their geological significance as indication of ocean ridge activity. Sediment Geol.1986;47:125-48. https://doi.org/10.1016/0037-0738(86)90075-8.
    Aitchison JC, Flood PG. Geochemical constraints on the depositional setting of Palaeozoic cherts from the New England orogen, NSW,eastern Australia. Mar Geol. 1990;94(1):79-95. https://doi.org/10.1016/0025-3227(90)90104-R.
    Anhui Provincial Geological Bureau. The Regional Geology of Anhui Province. Beijing:Geological Publishing House; 1987. p. 1-247(in Chinese).
    Bai X, Luo GM, Wu X, et al. Carbon isotope records indicative of paleoceanographical events at the latest Permian Dalong formationat Shangsi, northeast Sichuan, China. J China Univ Geosci.2008;19(5):481-7.https://doi.org/10.1016/S1002-0705(08)60053-9.
    Bates RL,Jackson JA. Glossary of geology. 2nd ed. Falls Church:American Geological Institute; 1980. p. 1-751.
    Beauchamp B, Baud A. Growth and demise of Permian biogenic chert along northwest Pangea:evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr Palaeoclimatol Palaeoecol. 2002;184(1-2):37-63. https://doi.org/10.1016/S0031-0182(02)00245-6.
    Beauchamp B, Grasby SE. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr Palaeoclimatol Palaeoecol. 2012;350-352(1):73-90. https://doi.org/10.1016/j.palaeo.2012.06.014.
    Berner RA. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA.2002;99:4172-7. https://doi.org/10.1073/pnas.032095199.
    Bostrom K, Kraemer T, Gartner S. Provenance and accumulation rates of opaline silica, Al,Ti,Fe,Mn,Cu,Ni and Co in Pacific pelagic sediments. Chem Geol. 1973;11(2):123-48. https://doi.org/10.1016/0009-2541(73)90049-1.
    Cao TT, Song ZG, Wang SB, et al. Physical property characteristics and controlling factors of Permian shale reservoir in the Lower Yangtze platform. Nat Gas Geosci. 2015;26(2):341-51. https://doi.org/10.11764/j.issn.1672-1926.2015.02.0341(in Chinese).
    Chen DZ, Qing HR, Yan X, et al. Hydrothermal venting and basin evolution(Devonian, South China):constraints from rare earth element geochemistry of chert. Sediment Geol. 2006;183(3):203-16.https://doi.org/10.1016/j.sedgeo.2005.09.020.
    Chen H, Xie XN, Hu CY, et al. Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi Section, Northwest Sichuan Basin in South China:implications for organic carbon-rich siliceous rocks formation. J Geochem Explor.2012;112(1):35-53. https://doi.org/10.1016/j.gexplo.2011.06.011.
    Cheng C,Li SY,Zhao DQ,et al. Geochemical characteristics of the Middle-Upper Permian bedded cherts in the northern margin of the Yangtze block and its response to the evolution of paleogeography and paleo-ocean. Bull Mineral Pet Geochem. 2015;34(1):155-66. https://doi.org/10.3969/j.issn.1007-2802.2015.01.018(in Chinese).
    Clapham ME, Payne JL. Acidification, anoxia, and extinction:a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology. 2011;39(11):1059-62. https://doi.org/10.1130/G32230.1.
    Clarkson MO, Kasemann SA, Wood RA, et al. Ocean acidification and the Permo-Triassic mass extinction. Science.2015;348(6231):229-32. https://doi.org/10.1126/science.aaa0193.
    Du YL, Li SY, Kong WL, et al. The Permian sedimentary facies and depositional environment analysis in the Jingxian-Nanling region of Anhui. J Stratigr. 2010;4:431-44(in Chinese).
    Fan HF,Wen HJ,Zhu XK,et al. Hydrothermal activity during Ediacaran-Cambrian transition:silicon isotopic evidence. Precambrian Res. 2013;224(224):23-35. https://doi.org/10.1016/j.preca mres.2012.09.004.
    Feng QL, Algeo TJ. Evolution of oceanic redox conditions during the Permo-Triassic transition:evidence from deepwater radiolarian facies. Earth Sci Rev. 2014;137:34-51. https://doi.org/10.1016/j.earscirev.2013.12.003.
    Feng QL, Gu SZ. Uppermost Changxingian(Permian)radiolarian fauna from southern Guizhou, southwestern China. J Paleontol.2002;76:797-809. https://doi.org/10.1017/S0022336000037483.
    Feng ZZ, He YB, Wu SH. Lithofacies paleogeography of Permian middle and Lower Yangtze Region. Acta Sedimentol Sin. 1993;3:12-24. https://doi.org/10.14027/j.cnki.cjxb.1993.03.003(in Chinese).
    Gao JF, Lu JJ, Lai MY, et al. Analysis of trace elements in rock samples using HR-ICPMS. J Nanjing Univ(Nat Sci). 2003;39(6):844-50(in Chinese).
    Golonka J,Ross MI,Scotese CR. Phanerozoic paleogeographic and paleoclimatic modeling maps. Can Soc Pet Geol Mem.1994;17:1-47.
    Grasby SE, Beauchamp B, Bond DPG, et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. GSA Bull. 2015;127(9-10):1331-47. https://doi.org/10.1130/B31197.1.
    Han SC, Hu K, Cao J, et al. Origin of early Cambrian black-shalehosted barite deposits in South China:mineralogical and geochemical studies. J Asian Earth Sci. 2015;106:79-94. https://doi.org/10.1016/j.jseaes.2015.03.002.
    Hein JR, Vallier TL, Allan MA. Chert petrology and geochemistry,mid-Pacific Mountains and Hess Rise, Deep Sea Drilling Project Leg 62. In:Thiede J, Vallier TL, et al., editors. Initial reports of the DSDP, vol. 62. Washington:U.S. Government Printing Office;1981. p.711-48.
    Hesse R. Silica diagenesis:origin of inorganic and replacement cherts.Earth Sci Rev. 1989;26(1):253-84. https://doi.org/10.1016/0012-8252(89)90024-X.
    Hinojosa JL, Brown ST, Chen J, et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology.2012;40(8):743-6. https://doi.org/10.1130/G33048.1.
    Hu G, Hu WX, Cao J, et al. The distribution, hydrocarbon potential,and development of the Lower Cretaceous black shales in coastal southeastern China. J Palaeogeogr. 2017;6(4):333-51. https://doi.org/10.1016/j.jop.2017.08.002.
    Jiang SY, Ding TP, Wan DF, et al, Silicon isotopic compositions of Archean banded Si-Fe formation(BIF)in the Gongchangling ore deposit, Liaoning Province, China. Sci China Ser B.1993;36(4):482-9.
    Jones DL, Murchey B. Geologic significance of Paleozoic and Mesozoic radiolarian chert. Annu Rev Earth Planet Sci.1986;14(1):455-92. https://doi.org/10.1 146/annurev.ea. 14.050186.002323.
    Kametaka M,Takebe M,Nagai H,et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation:a continental shelf radiolarian chert. Sediment Geol. 2005;174(3-4):197-222. https://doi.org/10.1016/j.sedgeo.2004.12.005.
    Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan:implications for an oceanic redox change. Chem Geol. 2002;182(1):15-34. https://doi.org/10.1016/S0009-2541(01)00273-X.
    Kidder DL, Worsley TR. Causes and consequences of extreme PermoTriassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol. 2004;203(3):207-37. https://doi.org/10.1016/S0031-0182(03)00667-9.
    Knoll AH, Bambach RK, Payne JL, et al. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett. 2007;256:295-313.https://doi.org/10.1016/j.epsl.2007.02.018.
    Kong QY, Gong YJ. Origin of the lower Permian siliceous rocks in Chaoxian County, Anhui. Oil Gas Geol. 1986;7(2):171-4(in Chinese).
    Kroeker KJ,Kordas RL,Crim RN,et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. 2010;13:1419-34. https://doi.org/10.1111/j.1461-0248.2010.01518.x.
    Lang XG, Shen B, Peng YB, et al. Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nat Commun. 2018;9:3019.https://doi.org/10.1038/s41467-018-05423-x.
    Lei BJ, Que HP, Hu N, et al. Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in western Hubei. Sediment Geol Tethyan Geol. 2002;22(2):70-9(in Chinese).
    Li HJ, Lin ZL, Xie XN. Geochemical characteristics and origin of Palaeozoic siliceous rocks in Lower Yangtze area. Lithol Reserv.2015;27(5):232-9(in Chinese).
    Li HJ, Xie XN, Lin ZL, et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin. Geol Sci Technol Inf. 2009;28(2):98-103(in Chinese).
    Liao ZW, Hu WX, Cao J, et al. Heterogeneous volcanism across the Permian-Triassic Boundary in South China and implications for the latest Permian mass extinction:new evidence from volcanic ash layers in the lower Yangtze region. J Asian Earth Sci.2016a;127:197-210. https://doi.org/10.1016/j.jseaes.2016.06.003.
    Liao ZW, Hu WX, Cao J, et al. Permian-Triassic boundary(PTB)in the Lower Yangtze Region, southeastern China:a new discovery of deep-water archive based on organic carbon isotopic and U-Pb geochronological studies. Palaeogeogr Palaeoclimatol Palaeoecol.2016b;451:124-39. https://doi.org/10.1016/j.palaeo.2016.03.004.
    Lii BQ, Wang HG, Hu WS, et al. Relationship between Paleozoic upwelling facies and hydrocarbon in southeastern marginal Yangtze block. Mar Geol Quat Geol. 2004;24(4):29-35. https://doi.org/10.16562/j.cnki.0256-1492.2004.04.005(in Chinese).
    Lv DW, Chen JD. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions(Shandong Province, China):sequence development in an epicontinental basin. J Asian Earth Sci. 2014;79:16-30. https://doi.org/10.1016/j.jseaes.2013.09.003.
    Lv DW, Wang DD, Li ZX,et al. Depositional environment,sequence stratigraphy and sedimentary mineralization mechanism in the coal bed-and oil shale-bearing succession:a case from the Paleogene Huangxian Basin of China. J Pet Sci Eng. 2017;148:32-51.https://doi.org/10.1016/j.petrol.2016.09.028.
    Machel HG. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol. 2001;140(1-2):143-75. https://doi.org/10.1016/S0037-0738(00)00176-7.
    Maliva RG, Knoll AH, Siever R. Secular change in chert distribution:a reflection of evolving biological participation in the silica cycle.Palaios. 1989;4(6):519-32. https://doi.org/10.2307/3514743.
    McGowran B. Silica burp in the Eocene ocean. Geology. 1989;17(9):857-60. https://doi.org/10.1130/0091-7613(1989)017%3c0857:SBITEO%3e2.3.CO;2.
    Murchey BL, Jones DL. A mid-Permian chert event:widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeogr Palaeoclimatol Palaeoecol.1992;96(1):161-74. https://doi.org/10.1016/0031-0182(92)90066-E.
    Murray RW, Buchholtz TBMR, Jones DL, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology. 1990;18(3):268-71. https://doi.org/10.1130/0091-7613(1990)018%3c0268:REEAI O%3e2.3.C0;2.
    Murray RW, Gerlach DC, Ten Brink MRB, et al. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, California:assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta. 1991;55(7):1875-95.https://doi.org/10.1016/0016-7037(91)90030-9.
    Murray RW. Chemical criteria to identify the depositional environment of chert:general principles and applications. Sediment Geol. 1994;90(3-4):213-32. https://doi.org/10.1016/0037-0738(94)90039-6.
    Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett. 1997;148:329-40. https://doi.org/10.1016/S0012-821X(97)00034-4.
    Pang Q, Hu G, Jiao K, et al. Characteristics of organic pores and composition of bio-precursors in the Wufeng and Longmaxi Formationshales, Southern Sichuan Basin, China. Energy Explor Exploit.2018;36(4):645-64. https://doi.org/10.1177/0144598717753166.
    Qiu Z, Wang QC. Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi,China. Sci China Earth Sci. 2011;54(7):1011-23. https://doi.org/10.1007/s11430-011-4198-x.
    Qiu Z, Wang QC. Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region. Acta Pet Sin. 2010;26(12):3612-28(in Chinese).
    Reichow MK,Pringle MS,Al'Mukhamedovc AI,et al. The timing and extent of the eruption of the Siberian Traps large igneous province:implications for the end-Permian environmental crisis. Earth Planet Sci Lett. 2009;277(1):9-20. https://doi.org/10.1016/j.epsl.2008.09.030.
    Ritterbush KA,Rosas S,Corsetti FA,et al. Andean sponges reveal long-term benthic ecosystem shifts following the endTriassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol. 2015;420:193-209. https://doi.org/10.1016/j.palae o.2014.12.002.
    Shen J, Algeo TJ, Hu Q, et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology.2012;40:963-6. https://doi.org/10.1130/G33329.1.
    Shen J, Lian Z, Feng QL, et al. Paleo-productivity evolution across the Permian-Triassic boundary and quantitative calculation of primary productivity of black rock series from the Dalong Formation, South China. Sci China Earth Sci. 2014;57(7):1583-94. https://doi.org/10.1007/s 11430-013-4780-5.
    Strauss H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol. 1997; 132(1):97-118.https://doi.org/10.1016/S0031-0182(97)00067-9.
    Shi CH, Cao J, Bao JP, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry:Sinian-Paleozoic paleo-oil reservoirs in South China. Org Geochem. 2015;83-84:77-93. https://doi.org/10.1016/j.orggeochem.2015.03.008.
    Shi CH, Cao J, Tan XC, et al. Hydrocarbon generation capability of Sinian-Lower Cambrian shale, mudstone and carbonate rocks in the Sichuan Basin, southwestern China:implications for contributions to the giant Sinian Dengying natural gas accumulation.AAPG Bull. 2018;102(5):817-53. https://doi.org/10.1306/0711171417417019.
    Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of its formation. Nature. 1977;266(5600):346-8. https://doi.org/10.1038/266346a0.
    Sun YD, Lai XN, Wignall PB, et al. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos. 2010;119(1):20-33. https://doi.org/10.1016/j.lithos.2010.05.012.
    Tian YT, Feng QL, Li Q. The petrogenesis and sedimentary environment of the Bedded cherts from Upper Permian Dalong Formation, Southwest Guangxi. Acta Sedimentol Sin. 2007;25(5):671-7. https://doi.org/10.14027/j.cnki.cjxb.2007.05.003(in Chinese).
    Taylor SR, McLennan SM. The continental crust:its composition and evolution. Malden:Blackwell; 1985. p. 1-328.
    Tribovillard N, Algeo TJ, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update. Chem Geol. 2006;232(1):12-32. https://doi.org/10.1016/j.chemg eo.2006.02.012.
    Van den Boorn SHJM, Van Bergen MJ, Vroon PZ, et al. Silicon isotope and trace element constraints on the origin of~3.5 Ga cherts:implications for Early Archaean marine environments.Geochim Cosmochim Acta. 2010;74(3):1077-103. https://doi.org/10.1016/j.gca.2009.09.009.
    Veevers JJ, Tewari RC. Permian-Carboniferous and PermianTriassic magmatism in the rift zone bordering the Tethyanmargin of southern Pangea. Geology. 1995;23(5):467-70. https://doi.org/10.1130/0091-7613(1995)023%3c0467:PCAPT M%3e2.3.CO;2.
    Wang RJ. Discovery of foraminifers in the Permian radiolarites in Jiangsu and Auhui Provinces and their depositional environment.J Tongji Univ. 1993;21(4):519-24(in Chinese).
    Williams LA, Crerar DA. Silica diagenesis,Ⅱ:general mechanisms. J Sediment Res. 1985;55(3):312-21. https://doi.org/10.1306/212F86B1-2824-11D7-8648000102C1865D.
    Wu SH, Feng ZZ, He YB. Study on anoxic environments of Permian in the middle and Lower Yangtze Region. Acta Sedimentol Sin.1994;12:29-36. https://doi.org/10.14027/j.cnki.cjxb.1994.02.004(in Chinese).
    Wu HR. Implications of radiolarian chert for the paleogeography of South China. J Paleogeogr. 1999;1(2):28-35(in Chinese).
    Xu YT. Genetic geochemistry for the bedded silicalite in the late Permian Dalong formation and its sedimentary setting in southeastern Hubei. J Guilin Inst Technol. 1997;3:204-12(in Chinese).
    Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sediment Geol. 1987;52:65-108. https://doi.org/10.1016/0037-0738(87)90017-0.
    Yao X, Zhou YQ, Li S, et al. Research status and advances in chert and Permian chert event. Adv Earth Sci. 2013;28(11):1189-200(in Chinese).
    Yin HF, Song HJ. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Sci China Earth Sci.2013;56:1791-803. https://doi.org/10.1007/s11430-013-4624-3.
    Yin HF, Huang S, Zhang KX, et al. The effects of volcanism on the Permo-Triassic mass extinction in South China. In:Sweet WC,et al., editors. Permo-Triassic events in the Eastern Tethys. Cambridge:Cambridge University Press; 1992. p. 169-74.
    Yin HF, Wu SB, Du YS, et al. South China defined as part of Tethyan archipelagic ocean system. Earth Sci J China Univ Geosci.1999;21:1-12(in Chinese).
    Yu H, Chen DZ, Wei HY, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province. Acta Pet Sin. 2012;28(3):1017-27(in Chinese).
    Zeng PS, Yang ZS, Meng YF, et al. Petrogenesis and significance of cherts in Tongling mineralization cluster area, Anhui. Geol Rev. 2004;50(2):153-61. https://doi.org/10.16509/j.geore view.2004.02.006(in Chinese).
    Zhao ZG, Gao LM. Discussion about standardization of methods to calculateδEu andδCe. Report Stand. 1998; 19(5):23-5(in Chinese).
    Zhu HF, Qin DY, Liu CZ. The origin, distributive pattern and tectonic control of siliceous rocks in Gufeng and Dalong formations, South China. Exp Pet Geol. 1989;11(4):341-8(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700