7050铝合金内部沿晶微裂纹热塑性修复的元胞自动机模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cellular automaton simulation on thermoplastic healing of intergranular microcrack in 7050 aluminium alloy
  • 作者:马凯 ; 张效迅 ; 李霞 ; 马芳
  • 英文作者:MA Kai;ZHANG Xiao-xun;LI Xia;MA Fang;School of Materials Engineering, Shanghai University of Engineering Science;School of Automotive Engineering, Shanghai University of Engineering Science;
  • 关键词:铝合金 ; 微裂纹 ; 热塑性修复 ; 动态再结晶 ; 元胞自动机
  • 英文关键词:7050 aluminium alloy;;microcrack;;thermoplastic repairing;;dynamic recrystallization;;cellular automaton
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:上海工程技术大学材料工程学院;上海工程技术大学汽车工程学院;
  • 出版日期:2014-02-15
  • 出版单位:中国有色金属学报
  • 年:2014
  • 期:v.24;No.179
  • 基金:上海市教委科研创新重点项目(12ZZ183);; 上海工程技术大学校基金项目(2012gp26,13KY0514);; 上海高校与上海中小企业产学研合作项目(12QY20)
  • 语种:中文;
  • 页:ZYXZ201402008
  • 页数:7
  • CN:02
  • ISSN:43-1238/TG
  • 分类号:65-71
摘要
根据7050铝合金单道次热压缩变形实验数据,对建立微裂纹修复的元胞自动机(CA)模型所需相关参数进行辨识和计算。利用Microsoft Visual C++平台编制了包含拓扑变形机制、位错密度演变机制、动态再结晶动力学机制的沿晶微裂纹热塑性修复的微观组织CA演化规则。针对裂纹表面和母相晶界的不同特征,提出再结晶过程中表面能和晶界能驱动下不同的晶粒长大方式。CA模拟结果表明:一定条件下的热塑性变形和动态再结晶可完全修复材料内部微裂纹,且裂纹愈合过程中出现的分段愈合特征与实验结果相吻合,但裂纹愈合的形貌演化取决于裂纹形态、裂纹表面形核率和形核位置、新晶粒长大方向与速度。
        According to experimental data of 7050 aluminum alloy in single-pass hot compression, the relevant parameters of cellular automaton(CA) model for microcrack healing were identified and calculated. Using Microsoft Visual C++ platform, the CA rules of microstructural evolution of intergranular microcrack during thermoplastic healing include topological deformation mechanism, the dislocation density evolution mechanisms and dynamic recrystallization kinetics mechanism were programmed. For the different characteristics of crack surface and grain boundary, the crack surface energy and grain boundary energy drive the growth of grain in different ways and the mechanism was proposed in the recrystallization process. The CA simulation results show that the hot thermoplastic deformation and dynamic recrystallization can repair microcracks completely under certain conditions, and the piecewise healing characteristics during crack healing process have a good agreement with the experimental results, but the appearance of crack healing depends on the crack morphology, crack nucleation rate and nucleation site, the growth direction and speed of new grain.
引文
[1]ZHANG Y J,HAN J T.Analysis of microstructure of steel 20 in the rang of healing of internal crack[J].Metal Science and Heat Treatment,2012,53(11):526-528.
    [2]韦东滨,韩静涛,谢建新,付晨光,王连忠,贺毓辛.热塑性变形条件下钢内部裂纹愈合的实验研究[J].金属学报,2000,36(6):622-625.WEI Dong-bin,HAN Jing-tao,XIE Jian-xin,FU Chen-guang,WANG Lian-zhong,HE Yu-xing.Experimental study on inner crack healing in steel during hot plastic deforming[J].Acta Metallurgica Sinica,2000,36(6):622-625.
    [3]WEI D B,JIANG Z Y,HAN J T.Modelling of the evolution of crack of nanoscale in iron[J].Computational Materials Science,2013,69:270-277.
    [4]韦东滨.金属材料内部裂纹愈合规律的研究[D].北京:北京科技大学,2001.WEI Dong-bin.Research on the disciplinarian of inner crack healing in metal[D].Beijing:Beijing University of Science and Technology,2001.
    [5]张海龙,杨君刚,孙军.工业纯铁内部穿晶疲劳微裂纹的扩散愈合过程[J].金属学报,2002,38(10):1015-1020.ZHANG Hai-long,YANG Jun-gang,SUN Jun.Diffusive healing of transgranular fatigue microcracks withinα-iron[J].Acta Metallurgica Sinica,2002,38(10):1015-1020.
    [6]杨君刚,张海龙,孙军.工业纯镁内部疲劳微裂纹的热扩散性愈合[J].金属学报,2005,41(8):819-823.YANG Jun-gang,ZHANG Hai-long,SUN Jun.Diffusive healing of internal fatigue microcracks in pure magnesium[J].Acta Metallurgica Sinica,2005,41(8):819-823.
    [7]ZHANG X X,CUI Z S,CHEN W,LI Y.A criterion for void closure in large ingots during hot forging[J].Journal of Materials Processing Technology,2009,209(4):1950-1959.
    [8]张效迅,崔振山.大锻件内部空洞热锻闭合的Z-C判据及其应用[J].机械工程学报,2009,45(1):148-152.ZHANG Xiao-xun,CUI Zhen-shan.Z-C criterion of void closure for large-ingot hot forging and its application[J].Journal of Mechanical Engineering,2009,45(1):148-152.
    [9]SELLARS C M,ZHU Q.Microstructural modeling of aluminium alloys during thermomechanical processing[J].Materials Science and Engineering A,2000,280:1-7.
    [10]DING R,GUO Z X.Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach[J].Computational Materials Science,2002,23:209-218.
    [11]JIN Zhao-yang,LIU Juan,CUI Zhen-shan,WEI Dong-lai.Identification of nucleation parameter for cellular automaton model of dynamic recrystallization[J].Transactions of Nonferrous Metals Society of China,2010,20(3):458-464.
    [12]金朝阳,崔振山.Q235动态再结晶微观组织演化模型及其参数辨识[J].热加工工艺,2010,39(24):33-37.JIN Zhao-yang,CUI Zhen-shan.Microstructure evolution model for Q235 under dynamic recrystallization and its parameter identification[J].Hot Working Technology,2010,39(24):33-37.
    [13]陈飞.热锻非连续变形过程微观组织演变的元胞自动机模拟[D].上海:上海交通大学,2012.CHEN Fei.Simulation of microstructure evolution during discontinuous hot forging processes using cellular automaton method[D].Shanghai:Shanghai Jiao Tong University,2012.
    [14]马凯,张效迅.元胞自动机法在裂纹愈合模拟中的应用[J].精密成形工程,2012,4(6):45-49.MA Kai,ZHANG Xiao-xun.The application of cellular automaton method in crack healing simulation[J].Journal of Netshap Forming Engineering,2012,4(6):45-49.
    [15]陆海鸣.尺寸依赖的界面能[D].长春:吉林大学,2006.LU Hai-ming.Size-dependent interface energy[D].Changchun:Jilin University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700