增压站低频噪声识别与控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification and Control of Low Frequency Noise in Turbo Charging Station
  • 作者:张波 ; 梁子晓 ; 尹爱军
  • 英文作者:ZHANG Bo;LIANG Zi-xiao;YIN Ai-jun;Research Institute of Chongqing Gas Mine Technology,Southwest Oil and Gasfield Company-Chongqing Gas District;State Key Laboratory of Mechanical Transmissions,College of Mechanical Engineering,Chongqing University;
  • 关键词:压缩站 ; 低频噪声 ; 空气动力性噪声
  • 英文关键词:compression station;;low frequency noise;;aerodynamic noise
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:中国石油西南油气田分公司重庆气矿工艺研究所;重庆大学机械工程学院机械传动国家重点实验室;
  • 出版日期:2018-06-25
  • 出版单位:装备环境工程
  • 年:2018
  • 期:v.15
  • 基金:国防预研基金项目(9140A17050115JW20001);; 重庆市人工智能技术创新重大主题专项重点项目(cstc2017rgzn-zdyfx0007)
  • 语种:中文;
  • 页:JSCX201806017
  • 页数:5
  • CN:06
  • ISSN:50-1170/X
  • 分类号:94-98
摘要
目的解决天然气增压站低频噪声严重的问题,识别低频噪声源,并对低频噪声加以控制。方法结合压缩机组的实际工作情况及结构,首先利用频谱及1/3倍频程分析增压站机组的振动和噪声特性,初步确定压缩站机组低频噪声与机组振动的关系,进一步利用相干函数分析法分析振动与低频噪声的相干关系,判定低频噪声并不是由振动主要引起的。结果机组的主要噪声源为冷却器和压缩缸的进排气管,低频噪声污染主要是由于机组周期性吸排气时,管道和机组壁投射出的空气动力性噪声所造成的,而机组振源的剧烈振动不是产生低频噪声污染的主要原因。进排气管可产生高达80 d B(A)的全频带噪声,其中包含声压级可高达100 dB的次声,尤其以频率11 Hz和17 Hz为主,并且传播距离远,通透力强,对人员和环境危害大。结论首先依据进排气管为主要噪声源,其次结合压缩站实际情况,从压缩器机组整体的降噪设计及厂房治理的降噪设计两部分考虑提出相应的改进措施,从而为机组的降噪提供有效的方法。
        Objective To solve the problem of low frequency noise of natural gas booster station, identify sources of low frequency noise and control low frequency noise. Methods According to the actual working condition and structure of the compressor unit, the vibration and noise characteristics of the turbocharger unit were analyzed by spectrum analysis and 1/3 frequency doubling process, and the relationship between the low frequency noise of the compressor station and the vibration of the unit was preliminarily determined. The coherent function analysis method was used to analyze the coherent relationship between the vibration and the low frequency noise. The low frequency noise was not caused by vibration. Results The main noise source of the unit was the cooler and the intake and exhaust pipe of the compressed cylinder. The low frequency noise pollution was mainly caused by the aerodynamic noise projected by the pipe and the unit wall during the periodic suction and exhaust of the unit, and the violent vibration of the source of the unit was not the main cause of the low frequency noise pollution. The intake and exhaust pipe could produce full band noise of up to 80 dB(A), including the sound pressure level up to 100 dB, espe-cially the frequency 11 Hz and 17 Hz, and the transmission distance was far, the permeability was strong, and the harm to the personnel and the environment was great. Conclusion According to the intake and exhaust pipe as the main noise source and in combination with the actual situation of compression station, the corresponding improvement measures are put forward from compressor unit's overall noise reduction design and the noise reduction design of the factory management, to provide an effective method for reducing the noise of the unit.
引文
[1]陈志勇,毛阳,史文库,等.汽车空调压缩机噪声异常问题的诊断与试验[J].振动、测试与诊断,2015(6):1063-1067.
    [2]刘元峰,赵玫,徐百平,等.家用空调器减振降噪研究综述与展望[J].振动与冲击,2005,24(4):120-121.
    [3]毛义军,祁大同.叶轮机械气动噪声的研究进展[J].力学进展,2009,39(2):189-202.
    [4]孙长城,陈长征,张宇,等.氨制冷螺杆压缩机组噪声分析与治理[J].噪声与振动控制,2005,25(6):54-56.
    [5]刘欢,陈长征,周昊,等.螺杆压缩机组噪声分析与控制[J].机械设计与制造,2013(2):229-231.
    [6]郭义杰,李宏坤,周帅.离心式齿轮压缩机噪声源识别与控制[J].风机技术,2010(2):3-6.
    [7]朱雄云,李双,王安柱,等.旋转压缩机低频噪声源识别及噪声抑制[J].苏州大学学报(工科版),2009,29(1):16-19.
    [8]冀军鹤,唐鹏,吴霞俊.螺杆压缩机低频噪声性能控制研究[J].压缩机技术,2017(2):24-26.
    [9]YIN A,LU J,DAI Z,et al.Isomap and Deep Belief Network-Based Machine Health Combined Assessment Model[J].Strojniski Vestnik,2016,62(12):740-750.
    [10]SHAO H D,JIANG H K,LI,X Q,et al.Rolling Bearing Fault Detection Using Continuous Deep Belief Network with Locally Linear Embedding[J].Computers in Industry,2018,96(1):27-39.
    [11]胡成太,高云凯,刘爽,等.基于频谱和相干分析的挖掘机噪声识别与控制[J].振动?测试与诊断,2013,33(6):1032-1038.
    [12]王睿,李宏坤,陈养毅,等.基于相干分析的离心式压缩机噪声源识别[J].风机技术,2008(1):7-9.
    [13]刘晓娟,潘宏侠.相干分析法在机械设备噪声源识别中的应用[J].电子测试,2010(7):19-22.
    [14]彭罡,陈万.油气田长输管道压缩机厂房降噪设计[J].天然气与石油,2012,30(5):92-94.
    [15]相宇.天然气压缩机厂房降噪的设计措施[J].油气田地面工程,2017,36(6):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700