金属熔丝增材制造技术的研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research status and prospect of metal wire additive manufacturing technology
  • 作者:王钰 ; 王凯 ; 丁东红 ; 卢清华 ; 易江龙
  • 英文作者:WANG Yu;WANG Kai;DING Donghong;LU Qinghua;YI Jianglong;School of Mechatronics Engineering,Foshan University;E.O.Paton Chinese Ukrainian Institute of Welding;
  • 关键词:增材制造 ; 丝材 ; 金属材料 ; 综述
  • 英文关键词:additive manufacturing;;wire;;metallic material;;review
  • 中文刊名:DHJI
  • 英文刊名:Electric Welding Machine
  • 机构:佛山科学技术学院机电工程学院;广东省焊接技术研究所(广东省中乌研究院);
  • 出版日期:2019-01-20
  • 出版单位:电焊机
  • 年:2019
  • 期:v.49;No.380
  • 基金:国家自然科学基金(51601043、51805085);; 广东省科技项目(2017A070701026)
  • 语种:中文;
  • 页:DHJI201901015
  • 页数:10
  • CN:01
  • ISSN:51-1278/TM
  • 分类号:79-87+133
摘要
随着现代计算机技术的快速发展,增材制造技术在诸多工业领域得到了广泛应用,逐渐成为智能制造技术的典型代表。其中,金属熔丝增材制造由于其成形效率高、成本低、材料利用率高等优势,已逐渐成为国内外增材制造研究的热点。介绍了金属熔丝增材制造技术的分类、应用范围、各自的优缺点和研究现状,重点讨论电弧熔丝增材制造技术的细分领域现状及应用,分析金属熔丝增材制造技术的未来研究目标与发展趋势。
        With the rapid development of modern computer technology,the additive manufacturing(AM)technology which is different from traditional manufacturing processes has been widely used in many industrial fields,which has gradually become the typical representative of intelligent manufacturing technology. Among those AM technologies,the metal wire additive manufacturing(MWAM)has gradually become the focus of AM research worldwide due to its advantages of high deposition rate,low cost and high material utilization rate. This paper introduces the classification,the application range,the advantages and disadvantages of MWAM as well as its current research state. The study focused on the current development and application of MWAM technology,and then the future research goals and trends are also discussed.
引文
[1]卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.
    [2]祁萌,李晓红,胡晓睿,等.增材制造技术在国外国防领域的发展现状与趋势[J].国防制造技术,2013(5):12-16.
    [3]王红军.增材制造的研究现状与发展趋势[J].北京信息科技大学学报(自然科学版),2014(3):20-24.
    [4]熊江涛,耿海滨,林鑫,等.电弧增材制造研究现状及在航空制造中应用前景[J].航空制造技术,2015,493(23):80-85.
    [5]徐文鹏.3D打印中的结构优化问题研究[D].安徽:中国科学技术大学,2016.
    [6]耿海滨,熊江涛,黄丹,等.丝材电弧增材制造技术研究现状与趋势[J].焊接,2015(11):17-21.
    [7]廖文俊,胡捷.增材制造技术的现状和产业前景[J].装备机械,2015(1):1-7.
    [8]于云,史廷春,孙芳芳,等.典型无机非金属材料增材制造研究与应用现状[J].材料导报,2016,30(21):119-129.
    [9]黄卫东.如何理性看待增材制造(3D打印)技术[J].新材料产业,2013(8):9-12.
    [10]章敏.送粉式和送丝式的钛合金激光增材制造特性研究[D].黑龙江:哈尔滨工业大学,2013.
    [11]周成候,李蝉,吴王平,等.金属材料增材制造技术[J].金属加工(冷加工),2016(s1):879-883.
    [12]任丽丽,刘金平,冯英超.金属部件送丝增材制造工艺研究现状[C].江苏:2017中国焊接产业论坛,2017.
    [13]Sui H,M Bi G,Folkes J,et al.D eposition of Ti-6Al-4V using a high power diode laser and wire,Part I:Investigation on the process characteristics[J].Surface&Coatings Technology,2008,202(16):3933-3939.
    [14]Sui H M,Bi G,Folkes J,et al.Deposition of Ti-6Al-4V using a high power diode laser and wire,Part II:Investigation on the mechanical properties[J].Surface&Coatings Technology,2008,202(19):4613-4619.
    [15]黄安国,刘博,郑增超,等.激光熔丝增材制造丝材过渡状态的电磁振动监测方法[J].机械工程学报,2018,54(2):34-40.
    [16]温斌和.薄壁构件等离子弧增材制造成形特性及尺寸控制[D].江苏:南京理工大学,2016.
    [17]王淑峰,姬强,迟静,等.等离子束在金属零件3D打印中的研究现状和发展趋势[J].材料导报,2015,29(1):111-116.
    [18]Martina F,Mehnen J,Williams S W,et al.Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology,2012,212(6):1377-1386.
    [19]罗震,张禹,贾鹏.Ti-6Al-4V钛合金微束等离子弧堆焊增材制造工艺研究[J].焊接,2016,36(4):13-16.
    [20]Lin J J,Lv Y H,Liu Y X,et al.Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J].Materials&Design,2016(102):30-40.
    [21]熊进辉,李士凯,耿永亮,等.电子束熔丝沉积快速制造技术研究现状[J].电焊机,2016,46(2):7-11.
    [22]黄春平,黄硕文,刘奋成.金属材料增材制造技术[J].金属加工(热加工),2016(2):34-38.
    [23]付贝贝.电子束送丝系统及增材制造工艺研究[D].江苏:南京理工大学,2017.
    [24]姚文静.美国洛克希德马丁引进增材制造技术[J].中国钛业,2014(4):50.
    [25]任晓华.西亚基公司电子束增材制造技术获得新发展[J].航空维修与工程,2017(1):14-14.
    [26]Wanjara P,Brochu M,Jahazi M.Electron beam freeforming of stainless steel using solid wire feed[J].Materials&Design,2007,28(8):2278-2286.
    [27]陈彬斌.电子束熔丝沉积快速成形传热与流动行为研究[D].湖北:华中科技大学,2013.
    [28]Shu X,Chen G,Liu J,et al.Microstructure evolution of copper/steel gradient deposition prepared using electron beam freeform fabrication[J].Materials Letters,2017:[页码不详].
    [29]田彩兰,陈济轮,董鹏,等.国外电弧增材制造技术的研究现状及展望[J].航天制造技术,2015(2):57-60.
    [30]王庭庭,张元彬,谢岳良.丝材电弧增材制造技术研究现状及展望[J].电焊机,2017,47(8):60-64.
    [31]Ding D,Pan Z,Cuiuri D,et al.Automatic multi-direction slicing algorithms for wire based additive manufacturing[J].Robotics and Computer-Integrated Manufacturing,2016,37(C):139-150.
    [32]Ding D,Pan Z,Cuiuri D,et al.A practical path planning methodology for wire and arc additive manufacturing of thinwalled structures[J].Robotics&Computer Integrated Manufacturing,2015,34(C):8-19.
    [33]Ding D,Pan Z,Cuiuri D,et al.Adaptivepathplanning for wirefeed additive manufacturing using medial axis transformation[J].Journal of Cleaner Production,2016(133):942-952.
    [34]Ding D,Pan Z,Cuiuri D,et al.A tool-path generation strategy for wire and arc additive manufacturing[J].International Journal of Advanced Manufacturing Technology,2014,73(1-4):173-183.
    [35]Ralph B.Method of making decorative articles:US,US1533300[P].1925.
    [36]Akira U.Method of constructing substantially circular crosssection vessel by welding:US,US 3665143 A[P].1972.
    [37]Kazanas P,Deherkar P,Almeida P,et al.Fabrication of geometrical features using wire and arc additive manufacture[J].Proceedings of the Institution of Mechanical Engineers.partB.journal of Engineering Manufacture,2012,226(6):1042-1051.
    [38]Kassmaul K,Schoch F W,LucknowH.Highqualitylargecomponents‘shape welded’by a SAW process[J].Weld.J.,1983,62(9):17-24.
    [39]何冠宇.电弧增材成形过程电弧及熔滴过渡行为研究[D].陕西:兰州理工大学,2016.
    [40]Xiong J,Lei Y,Chen H,et al.Fabrication of inclined thinwalled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition[J].Journal of Materials Processing Technology,2017(240):397-403.
    [41]Ribeiro F,Norrish J,McMaster R S.Practical Case of Rapid Prototyping Using Gas Metal Arc Welding[C].Paris:Proceeding of Conference on Computer Technology in Welding,1994:55.
    [42]Ribiero F,Ogunbiyi B,Norrish J.Mathematicalmodelofwelding parameters for rapid prototyping using robot welding[J].Sci.Technol.Weld.Joining,1997,2(5):185-190.
    [43]Spencer J D,Dickens P M,Wykes C M.Rapid prototyping of metal parts by three-dimensional welding[J].Proceedings of the Institution of Mechanical Engineers Part BJournal of Engineering Manufacture,1998,212(3):175-182.
    [44]Zhang Y M,Li P,Chen Y,et al.Automated system for weldingbased rapid prototyping[J].Mechatronics,2002,12(1):37-53.
    [45]Zhao H,Zhang G,Yin Z,et al.A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping[J].Journal of Materials Processing Techno-,,():logy,2011,211(3):488-495.
    [46]Zhao H,Zhang G,Yin Z,et al.Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J].Journal of Materials Processing Tech,2012,212(1):276-285.
    [47]孟庆亮.不锈钢薄板冷金属过渡焊焊接(CMT)工艺研究[D].吉林:吉林大学,2015.
    [48]Zhang C,Li Y,Gao M,et al.Wire Arc Additive Manufacturing of Al-6Mg alloy Using Variable Polarity Cold Metal Transfer Arc as Power Source[J].Materials Science&Engineering A,2017:711.
    [49]Wang P,Hu S,Shen J,et al.Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy[J].Journal of Materials Processing Technology,2017:245.
    [50]李玉龙,禹业晓.TIG堆焊技术研究进展[J].电焊机,2012,42(12):70-76.
    [51]OuyangJH,WangH,KovacevicR.Rapidprototypingof 5356-aluminum alloy based on variable polarity gas tungsten arc welding:Process control and microstructure[J].Materials&Manufacturing Processes,2002,17(1):103-124.
    [52]Wang H,Jiang W,Ouyang J,et al.Rapid prototyping of 4043Al-alloy parts by VP-GTAW[J].Journal of Materials Processing Technology,2004,148(1):93-102.
    [53]Gault R,Ridgway K,Escobarpalafox G.Preliminary Empirical Models for Predicting Shrinkage,Part Geometry and Metallurgical Aspects of Ti-6Al-4V Shaped Metal Deposition Builds[C]//2011:012002.
    [54]Ma Y,Cuiuri D,Shen C,et al.Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J].Additive Manufacturing,2015(8):71-77.
    [55]杨波.全球首个3D打印海上起重机吊钩通过负载测试[EB/OL].http://www.sohu.com/a/219032726_637762,2018-04-24.
    [56]3D打印世界.中广核:金属3D打印制冷机端盖首次成功用于大亚湾核电站[EB/OL].http://www.sohu.com/a/221036610_254021,2018-04-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700