气体声学温度计中声波导管的优化设计研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Acoustic Waveguides for Acoustic Gas Thermometry
  • 作者:陈厚桦 ; 冯晓娟 ; 林鸿 ; 张金涛 ; 任成 ; 王克俭
  • 英文作者:CHEN Hou-hua;FENG Xiao-juan;LIN Hong;ZHANG Jin-tao;REN Cheng;WANG Ke-jian;Electrical and Mechanical College,Beijing University of Chemical Technology;Division of Thermophysics and Process Meas,National Institute of Metrology;Institute of Nuclear and New Energy Technology,Tsinghua University;
  • 关键词:计量学 ; 气体声学温度计 ; 声波导管 ; 热力学温度 ; 圆柱声学共鸣法
  • 英文关键词:metrology;;acoustic gas thermometry;;acoustic waveguides;;thermodynamic temperature;;cylindrical acoustic resonator
  • 中文刊名:JLXB
  • 英文刊名:Acta Metrologica Sinica
  • 机构:北京化工大学机电学院;中国计量科学研究院;清华大学核能与新能源技术研究院;
  • 出版日期:2019-01-22
  • 出版单位:计量学报
  • 年:2019
  • 期:v.40;No.178
  • 基金:国家重点研发计划(2016YFF0200101);; 国家自然科学基金(51476153; 51506114)
  • 语种:中文;
  • 页:JLXB201901001
  • 页数:7
  • CN:01
  • ISSN:11-1864/TB
  • 分类号:3-9
摘要
声波导管的设计是影响声学信号信噪比的关键因素,导管内径越大、长度越短,越利于声波传输,但同时对声学共鸣腔产生更大的扰动。提出了采用变径声波导管降低声波的能量损耗和扰动方法,建立了变径声波导管的衰减和扰动模型,对比分析声学信号在不同尺寸声波导管内的能量衰减和导管对圆柱轴向非缔合声学共振频率和半宽的扰动,获得了优化的导管尺寸,在声波传输能量损失较小的情况下对内长为80 mm圆柱腔体首个轴向非缔合声学共振频率产生的相对扰动在3×10-5以内,该声波导管的优化设计可为高温气体声学温度计的深入研究提供理论支持。
        The design of the acoustic waveguides is key to the signal-to-noise ratio of the acoustic resonances. Acoustic waveguides with larger inner diameter and shorter length are good for the signal transfer,but it will cause larger perturbation to the acoustic resonator. A new kind of acoustic waveguides with variable dimensions to reduce energy loss along the waveguides as well as the perturbation from the ducts was proposed,and a model of the energy loss and the perturbation for the new design was developde,compared the sound attenuation and the perturbation to the acoustic resonance frequencies and half-widths for different dimensions of the waveguides. The optimized design of the acoustic waveguides can reduce the perturbation to the acoustic resonance frequency to below 3 × 10-5for the first longitudinal non-degenerate mode of a cylindrical resonator with an inner length of 80 mm. This research contributes to the further study of high-temperature acoustic gas thermometry.
引文
[1] Landau L D,Lifshitz E M. Statistical Physics Part 1[M]. 3rd ed. Amsterdam:Elsevier,1986.
    [2] Machin G,Engert J,Gavioso R M,et al. The Euramet Metrology Research Programme Project Implementing the New Kelvin(In K)[J]. International Journal of Thermophysics,2014,35(3-4):405-416.
    [3] Fenn J B,Baierlein R. Engines,Energy and Entropy:A Thermodynamics Primer[J]. American Journal of Physics,1983,51(2):189-190.
    [4] Fischer J,Podesta M,Hill K D,et al. Present estimates of the differences between thermodynamic temperatures and the ITS-90[J]. International Journal of Thermophysics,2011,32(1-2):12-25.
    [5] Moldover M R,Gavioso R M,Mehl J B,et al.Acoustic gas thermometry[J]. Metrologia,2014,51(1):R1-R19.
    [6]郑荣伟,冯晓娟,伍肆,等.近临界二氧化碳声速的精密测量研究[J].计量学报,2017,38(1):1-6.Zheng R W,Feng X J,Wu S,et al. Sound speed measurement for carbon dioxide near the critical region[J]. Acta Metrologica Sinica,2017,38(1):1-6.
    [7] Rippple D C,Murdock W E,Strouse G F,et al. Room temperature acoustic transducer for high-temperature thermometry[C]//Temperature:Its Measurement and Control in Science and Industry,New York,2012:44-49.
    [8] Feng X J,Gillis K A,Moldover M R,et al. Microwave cavity measurements for gas thermometry up to the copper point[J]. Metrologia,2013,50(3):219-226.
    [9] Zhang K,Feng X J,Gillis K A,et al. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature[J]. Philosophical Transactions,2016,374:20150049.
    [10]高结,冯晓娟,林鸿,等.声学温度计中声波导管声学传感器的研究[J].仪器仪表学报,2014,35(3):627-633.Gao J,Feng X J,Lin H,et al. Study on acoustic transducer with acoustic ducts in acoustic thermometry[J]. Chinese Journal of Scientific Instrument,2014,35(3):627-633.
    [11] Lin H, Feng X J, Gillis K A, et al. Improved determination of the Boltzmann constant using a single,fixed length cylindrical cavity[J]. Metrologia,2013,50(4):417-432.
    [12]尹钊玮,冯晓娟,林鸿,等.非连续边界层对圆柱声学共鸣频率的影响研究[J].计量学报,2014,35(1):1-4.Yin Z W,Feng X J,Lin H,et al. The discontinuous boundary layer effects on acoustic resonance frequency in cylindrical cavity[J]. Acta Metrologica Sinica,2014,35(1):1-4.
    [13]尹钊玮,冯晓娟,林鸿,等.高压气体声速精密测量系统的研制与测试[J].仪器仪表学报,2013,34(4):774-779.Yin Z W,Feng X J,Lin H,et al. Development and test of precision sound speed measurement system for gases at high pressure[J]. Chinese Journal of Scientific Instrument,2013,34(4):774-779.
    [14]崔劲,冯晓娟,林鸿,等.单圆柱微波谐振法测量热力学温度的研究[J].计量学报,2018,39(2):255-261.Cui J, Feng X J, Lin H, et al. Thermodynamic Temperature Measurement Using Single Cylindrical Microwave Resonator[J]. Acta Metrologica Sinica,2018,39(2):255-261.
    [15] Trusler J P M. Physical acoustics and metrology of fluids[M]. New York:Adam Hilger,1991.
    [16] Zhang J T,Lin H,Feng X J,et al. Progress toward redetermining the Boltzmann constant with a fixed-pathlength cylindrical resonator[J]. International Journal of Thermophysics,2011,32(7-8):1297-1329.
    [17] Gillis K A,Mehl J B,Moldover M R. Theory of the Greenspan Viscometer[J]. Journal of the Acoustical Society of America,2003,114(1):166-73.
    [18]张方,战可涛,冯晓娟,等.导管对圆柱共鸣腔径向共振模式的扰动[J].计量学报,2011,32(5):455-458.Zhang F, Zhan K T, Feng X J, et al. Duct perturbations to the radial modes of cylindrical resonators[J]. Acta Metrologica Sinica,2011,32(5):455-458.
    [19] Crandall I B. Theory of vibrating systems and sound[M]. New York:D. Van Nostrand company,1927.
    [20] Gillis K A,Lin H,Moldover M R. Perturbations from ducts on the modes of acoustic thermometers[J].Journal of the National Institute of Standards&Technology, 2009, 114(5):263-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700