碳质纳米填料在聚合物导热复合材料中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Research of Carbon-Based Nanofillers Filled Polymer-Based Thermal Conductive Composites
  • 作者:单博 ; 谢兰 ; 薛白 ; 秦舒浩 ; 郑强
  • 英文作者:Bo Shan;Lan Xie;Bai Xue;Shuhao Qin;Qiang Zheng;College of Materials and Metallurgy, Guizhou University;National Engineering Research Center for Compounding and Modification of Polymeric Materials;Department of Polymer Science and Engineering, Zhejiang University;
  • 关键词:导热 ; 高分子复合材料 ; 碳质纳米填料
  • 英文关键词:thermal conductivity;;polymer composite;;carbon-based nanofiller
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:贵州大学材料与冶金学院;国家复合改性聚合物材料工程技术研究中心;浙江大学高分子科学与工程系;
  • 出版日期:2019-06-15
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(201604016,51763003);; 黔教合KY字[2017]061;; 黔科合LH字[2017]7251
  • 语种:中文;
  • 页:GFZC201906027
  • 页数:9
  • CN:06
  • ISSN:51-1293/O6
  • 分类号:180-187+195
摘要
碳质纳米粒子填充聚合物制备的导热复合材料,因其质量轻、比强度高、成本低和加工性能好等优势受到研究者关注。聚合物因其自身导热系数低,无法适应电子元件高功率化、高密度化和高集成化所产生的高热量散热要求。因此,研究开发高导热且力学性能优异的聚合物基导热复合材料对于电子产品的设计和扩展具有迫切的理论意义和实用价值。而目前聚合物基导热复合材料还存在一些不足,如碳质纳米填料含量较低时,导热能力不足;而其含量较高时,复合材料综合性能难以平衡。如何高效地构建有效导热通路以减少界面热阻是研究的难点和重点。鉴于此,文中不仅分析了碳质纳米填料和聚合物本征导热机理及聚合物基复合材料的导热机理,讨论碳质纳米填料本征结构以及在导热聚合物基复合材料中的聚集态结构对构建高通量导热通路的影响,而且提出近期或将来需要解决的关键问题。最后,就聚合物基导热复合材料未来的发展方向与趋势进行了展望。
        Thermally conductive polymer composites filled with carbon nanoparticles are of high scientific and industrial significance due to the distinct featurs of light weight, high specific strength, low cost and favorable processability. However, the low thermal conductivity of polymer matrices largely thwarts their widespread applications especially in the fields of electronic components, mainly arising from the challenges in heat transfer caused by the high power, high density and high integration of materials. From the theoretical and practical points, it is therefore urgent to investigate polymer-based thermally conductive composites with a high thermal conductivity and excellent mechanical properties for the design and expansion of electronic products. Unfortunately, the exploitation of thermally conductive composites remains unsatisfying due to the inferior thermal conductivity in insufficient carbon-based filler contents and the poor balance between thermal and mechanical properties at high carbon-based filler contents. How to build effective thermal conducting paths to reduce the interface thermal resistance herein, the thermal conducting mechanisms of carbon nanofillers, polymers and carbon-based polymer composites were firstly analyzed. Then, the influence of the bulk structure of carbon nanoparticles and the assembly morphologies of carbon-based polymer composites on the construction of high-flux heat transfer pathways were discussed in details. The main focuses on enhancing the thermal conductivity were further given. Moreover, the development directions and trends of polymer-based thermally conductive composites were proposed.
引文
[1] Yao Y,Zeng X,Wang F,et al.Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide[J].Chem.Mater.,2016,80:1357-1359.
    [2] Zeng X,Yao Y,Gong Z,et al.Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J].Small,2015,11:6205-6213.
    [3] Babaei H,Keblinski P,Khodadadi J M.Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene [J].Int.J.Heat Mass Transfer,2013,58:209-216.
    [4] Burger N,Laachachi A,Ferriol M,et al.Review of thermal conductivity in composites:mechanisms,parameters and theory[J].Prog.Polym.Sci.,2016,61:1-28.
    [5] Han Z,Fina A.Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J].Prog.Polym.Sci.,2011,36:914-944.
    [6] Choy C L,Luk W H,Chen F C.Thermal conductivity of highly oriented polyethylene[J].Polymer,1978,19:155-162.
    [7] Shtein M,Nadiv R,Buzaglo M,et al.Graphene-based hybrid composites for efficient thermal management of electronic devices[J].ACS Appl.Mater.Interfaces,2015,7:23725-23730.
    [8] Burris D L,Sawyer W G.Hierarchically constructed metal foam/polymer composite for high thermal conductivity[J].Wear,2008,264:374-380.
    [9] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Lett.,2008,8:902.
    [10] Shtein M,Nadiv R,Buzaglo M,et al.Thermally conductive graphene-polymer composites:size,percolation,and synergy effects[J].Chem.Mater.,2015,27:2100-2106.
    [11] Feng W,Qin M,Feng Y.Toward highly thermally conductive all-carbon composites:structure control[J].Carbon,2016,109:575-597.
    [12] Zhang W B,Zhang Z X,Yang J H,et al.Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J].Carbon,2015,90:242-254.
    [13] Chen H,Ginzburg V V,Yang J,et al.Thermal conductivity of polymer-based composites:fundamentals and applications[J].Prog.Polym.Sci.,2016,59:41-85.
    [14] Zhou S,Luo W,Zou H,et al.Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite[J].J.Compos.Mater.,2016,50:327-337.
    [15] Zhou H,Deng H,Zhang L,et al.Toward multi-functional polymer composites through selectively distributing functional fillers[J].Composites Part A,2016,82:20-33.
    [16] Ren P G,Si X H,Sun Z F,et al.Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure[J].J.Polym.Res.,2016,23:21.
    [17] Ding P,Zhang J,Song N,et al.Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions[J].Compos.Sci.Technol.,2015,109:25-31.
    [18] Huang J,Zhu Y,Xu L,et al.Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend[J].Compos.Sci.Technol.,2016,129:160-165.
    [19] Huang J,Zhu Y,Xu L,et al.Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend[J].Compos.Sci.Technol.,2016,129:160-165.
    [20] Kuang Y,Huang B.Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites:A multi-scale investigation[J].Polymer,2015,56:563-571.
    [21] Song S H,Park K H,Kim B H,et al.Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J].Adv.Mater.,2013,25:732-737.
    [22] Gu J,Guo Y,Lü Z,et al.Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J].Composites Part A,2015,78:95-101.
    [23] Jung H,Yu S,Bae N S,et al.High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J].ACS Appl.Mater.Interfaces,2015,7:15256-15262.
    [24] Wu D,Gao X,Sun J,et al.Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites[J].Composites Part A,2017,102:88-95.
    [25] Chen J,Huang X,Zhu Y,et al.Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J].Adv.Funct.Mater.,2016,27:1604754.
    [26] Yu J,Ji E C,Kim S Y.Thermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication[J].Composites Part B,2017,110:171-177.
    [27] Huang Y,Su Y,Li S,et al.Fabrication of graphite film/aluminum composites by vacuum hot pressing:process optimization and thermal conductivity[J].Composites Part B,2016,107:43-50.
    [28] Burger N,Laachachi A,Ferriol M,et al.Review of thermal conductivity in composites:mechanisms,parameters and theory[J].Prog.Polym.Sci.,2016,61:1-28.
    [29] Idumah C I,Hassan A.Recently emerging trends in thermal conductivity of polymer nanocomposites[J].Rev.Chem.Eng.,2016,32:413-457.
    [30] Mu L,Ji T,Chen L,et al.Paving the thermal highway with self-organized nanocrystals in transparent polymer composites[J].ACS Appl.Mater.Interfaces,2016,8:29080-29087.
    [31] Varshney V,Patnaik S,Farmer B,et al.Heat transport in epoxy networks:a molecular dynamics study[J].Polymer,2009,50:3378-3385.
    [32] Henry A.Thermal transport in polymers[J].Annu.Rev.Heat Transfer,2014,17:485-520.
    [33] Shen S,Henry A,Tong J,et al.Polyethylene nanofibres with very high thermal conductivities[J].Nat.Nanotechnol.,2010,5:251-255.
    [34] Choy C L.Thermal conductivity of polymers[J].Polymer,1977,18:984-1004.
    [35] Uetani K,Hatori K.Thermal conductivity analysis and applications of nanocellulose materials[J].Sci.Technol.Adv.Mater.,2017,18:877-892.
    [36] Uetani K,Okada T,Oyama H T.In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydrogels[J].ACS Macro Lett.,2017,6:345-349.
    [37] Kim G H,Lee D,Shanker A,et al.High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J].Nat.Mater.,2015,14:295-300.
    [38] Tonpheng B,Yu J,Andersson O.Thermal conductivity,heat capacity,and cross-linking of polyisoprene/single-wall carbon nanotube composites under high pressure[J].Macromolecules,2016,42:9295-9301.
    [39] Haggenmueller R,Guthy C,Lukes J R,et al.Single wall carbon nanotube/polyethylene nanocomposites:thermal and electrical conductivity[J].Macromolecules,2007,40:2417-2421.
    [40] Yu J,Sundqvist B,Tonpheng B,et al.Thermal conductivity of highly crystallized polyethylene[J].Polymer,2014,55:195-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700