鸡蛋壳膜机械搅拌分离影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence Factors of Separating Egg Membrane from Eggshell by Mechanical Stirring
  • 作者:迟媛 ; 王勇 ; 李蒙福 ; 杨月斌 ; 任洁 ; 迟玉杰
  • 英文作者:CHI Yuan;WANG Yong;LI Mengfu;YANG Yuebin;REN Jie;CHI Yujie;College of Engineering,Northeast Agricultural University;College of Food Science,Northeast Agricultural University;
  • 关键词:固液两相流 ; 颗粒悬浮 ; 数值模拟 ; 壳膜分离
  • 英文关键词:liquid-solid two-phase flow;;particles suspension;;numerical simulation;;eggshell membrane separation
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:东北农业大学工程学院;东北农业大学食品学院;
  • 出版日期:2017-09-25
  • 出版单位:农业机械学报
  • 年:2017
  • 期:v.48
  • 基金:国家蛋鸡产业体系项目(CARS-41-K25);; 黑龙江省博士后经费项目(LBH-Z14032)
  • 语种:中文;
  • 页:NYJX201709046
  • 页数:10
  • CN:09
  • ISSN:11-1964/S
  • 分类号:364-373
摘要
基于Fluent研究了机械搅拌分离鸡蛋壳膜在不同搅拌转速、颗粒粒径和料液比下对颗粒悬浮状态、固含率分布、固相速度和搅拌功率等流场特性的影响。仿真结果表明:增大搅拌转速,有利于减小容器底部颗粒堆积,且利于颗粒悬浮,但功耗明显增大;增大颗粒粒径可减小底部中央区域的颗粒堆积,颗粒逐渐向四周扩散,但颗粒的悬浮高度会降低;增大料液比易在底部产生颗粒堆积。根据仿真结果进行了蛋壳膜分离试验,以搅拌转速、搅拌时间、料液比、分离液温度为影响因素,膜回收率和搅拌功率为评价指标进行二次正交旋转组合试验,得出最优因素参数组合。试验表明提高搅拌转速和搅拌时间可明显增大蛋膜回收率,当搅拌时间为18.57 min、搅拌转速为337.68 r/min、料液比为0.07 g/m L、温度为20.0℃时,膜回收率达到88.58%,功耗低,分离效果较好。
        The method of mechanical stirring to separate egg membrane from eggshell has the advantages of high separating efficiency,bulk processing and no pollution to the environment. Fluent 6. 3 was used to explore the effects of different stirring rotational velocities,particle diameter sizes and solid-liquid ratios on the flow field characteristics of the particle suspension state,solid holdup distribution,solidphase velocity and stirring power consumption. Simulation results showed that the scope of particle accumulation at the bottom would be decreased while the solid-liquid ratio was decreased and the solidliquid ratio should be reduced properly. Particles accumulation was decreased while stirring rotational velocity was increased,but power consumption would be increased dramatically,in order to ensure most particles suspension and reduce power consumption,the stirring rotational velocity should be set as 300 ~350 r/min in experiment. Enlarging particles diameter size can reduce particle accumulation at bottom,lower particles suspension height,and increase the moving resistance of particles along the axial direction in the flow field,so the particles size of 1. 5 ~ 2. 5 mm can be chosen for eggshell separation experiment.Therefore,appropriate conditions were obtained for the experiment of separating membrane from eggshell according to the simulation results. Moreover,quadratic orthogonal rotary combination experiments were carried out with factors of stirring rotational velocity,stirring time,solid-liquid ratio and separating medium temperature. The experimental data was optimized and analyzed by Design-Expert 8. 0. 6. The regression model between the experiment index and the factors was obtained. Meanwhile,the response surfaces were established between membrane recovery and experiment factors in order to obtain the relationship intuitively. The experiment result showed that the importance of stirring rotational velocity to egg membrane recovery was the most,and then the stirring time,separation medium temperature and solid-liquid ratio. The interaction between stirring time and stirring rotational velocity to separation effect was the most significant. Optimization results showed that the membrane recovery rate reached 88. 58%while the stirring time was 18. 57 min,stirring rotational velocity was 337. 68 r/min,solid-liquid ratiowas 0. 07 g/m L,and the separation medium temperature was 20℃,and the separation effect of egg membrane from eggshell was perfect. Conclusions of numerical simulation and experiment would improve the membrane recovery and utilization of discarded eggshell,and provide a reference for the solid-liquid two-phase flow and related study.
引文
1 周艳华.可溶性鸡蛋壳膜蛋白与多肽的制备及其抗氧化活性的研究[D].武汉:华中农业大学,2010.ZHOU Yanhua.The study of preparing soluble eggshell membrane protein and peptide and antioxidative activity[D].Wuhan:Huazhong Agricultural University,2010.(in Chinese)
    2 司伟达,王旭清,韩兆鹏,等.鸡蛋壳资源的再开发及研究进展[J].农产品加工·学刊,2012(10):36-37.SI Weida,WANG Xuqing,HAN Zhaopeng,et al.The development and research progress of egg shell resource[J].Academic Periodical of Farm Products Processing,2012(10):36-37.(in Chinese)
    3 MATEJ B.Eggshell membrane biomaterialas a platform for applications in materials science[J].Acta Biomaterialia,2014,10(9):3827-3835.
    4 张世庆,戴其俊,孙力,等.禽蛋裂纹检测敲击装置的力学分析与结构优化[J/OL].农业机械学报,2017,48(5):363-368.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20170546&flag=1.DOI:10.6041/j.issn.1000-1298.2017.05.046.ZHANG Shiqing,DAI Qijun,SUN Li,et al.Mechanical analysis and structural optimization of egg crack detection rapping device[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):363-368.(in Chinese)
    5 迟媛,王勇,任洁,等.鸡蛋壳膜分离装置设计及试验研究[J].东北农业大学学报,2016,47(8):90-99.CHI Yuan,WANG Yong,REN Jie,et al.The design and experimental study of eggshell membrane separation device[J].Journal of Northeast Agricultural University,2016,47(8):90-99.(in Chinese)
    6 李涛,马美湖,蔡朝霞,等.鸡蛋壳膜高效环保分离方法的研究[J].环境工程,2009,27(增刊1):533-537.LI Tao,MA Meihu,CAI Chaoxia,et al.Study on efficient and environmentally friendly separation method of eggshell membrane[J].Environmental Engineering,2009,27(Supp.1):533-537.(in Chinese)
    7 MICHAEL D,VLADIMIR V.Egg shell membrane separation:US,8418943[P].2013-04-06.
    8 杨敏官,来永斌.搅拌槽内固液悬浮特性的试验研究[J].机械工程学报,2011,47(6):186-192.YANG Minguan,LAI Yongbin.Experimental study on the characteristics of solid liquid suspension in stirred tank[J].Journal of Mechanical Engineering,2011,47(6):186-192.(in Chinese)
    9 黄雄斌,闫宪斌,施力田.固液搅拌槽内液相速度的分布[J].化工学报,2002,53(7):717-722.HUANG Xiongbin,YAN Xianbin,SHI Litian.Distribution of liquid phase velocity in solid-liquid stirred tank[J].CIESC Journal,2002,53(7):717-722.(in Chinese)
    10 李良超,杨军,徐斌.轻密度颗粒在搅拌槽内悬浮特性的数值模拟[J].农业工程学报,2013,29(16):42-49.LI Liangchao,YANG Jun,XU Bin.Numerical simulation of the suspension characteristics of light density particles in stirred tank[J].Transactions of the CSAE,2013,29(16):42-49.(in Chinese)
    11 周济人,汤方平,石丽建,等.基于CFD的轴流泵针对性设计与试验[J/OL].农业机械学报,2015,46(8):42-47.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20150807&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2015.08.007.ZHOU Jiren,TANG Fangping,SHI Lijian,et al.Design and test flow pump shaft based on CFD[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):42-47.(in Chinese)
    12 石代嗯.分离容器内流固耦合的实验研究与数值模拟[D].北京:北京化工大学,2014.SHI Daien.Experimental study and numerical simulation of fluid-solid coupled in a stirred tank[D].Beijing:Beijing University of Chemical Technology,2014.(in Chinese)
    13 于勇.FLUENT入口与进阶教程[M].北京:北京理工大学出版社,2008:145-187.
    14 MICALE G,GRISAFI F,RIZZUTI L,et al.CFD simulation of particle suspension height in stirred vessels[J].Chemical Engineering Research and Design,2004,82(9):1204-1213.
    15 OCHIENG A,LEWIS A E.CFD simulation of solids off-bottom suspension and cloud height[J].Hydrometallurgy,2006,82(1-2):1-12.
    16 TATTERSON G B.Fluid mixing and gas dispersion in agitated tanks[M].New York:Mc Graw-Hill,1991.
    17 李良超,徐斌,杨军.基于计算流体力学模拟的下沉与上浮颗粒在搅拌槽内的固液悬浮特性[J].机械工程学报,2014,50(12):185-191.LI Liangchao,XU Bin,YANG Jun.Solid-liquid suspension characteristics of sinking and floating particles in a stirred tank based on computational fluid dynamics simulation[J].Journal of Mechanical Engineering,2014,50(12):185-191.(in Chinese)
    18 王福军.流体机械旋转湍流计算模型研究进展[J/OL].农业机械学报,2016,47(2):1-14.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160201&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2016.02.001.WANG Fujun.Advances in computational models of turbulent flow in fluid machinery[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):1-14.(in Chinese)
    19 孙锐,李争起,吴少华,等.不同湍流模型对强旋流动的数值模拟[J].动力工程,2002,22(3):1750-1758.SUN Yue,LI Zhengqi,WU Shaohua,et al.Numerical simulation of strong swirling flow with different turbulence models[J].Power Engineering,2002,22(3):1750-1758.(in Chinese)
    20 彭家强,宋丹路,宗营营.基于Fluent四通道煤粉燃烧器流场数值模拟[J].机械科学与技术,2012,31(1):63-66.PENG Jiaqiang,SONG Danlu,ZONG Yingying.Numerical simulation of flow field of four channel pulverized coal burner based on Fluent[J].Mechanical Science and Technology,2012,31(1):63-66.(in Chinese)
    21 任杰.搅拌反应器流场与动力性能的模拟及实验研究[D].郑州:郑州大学,2007.REN Jie.Simulation and experimental study on flow field and dynamic performance of stirred reactor[D].Zhengzhou:Zhengzhou University,2007.(in Chinese)
    22 丁杨.双层搅拌体系中固液两相流的数值模拟研究[D].上海:华东理工大学,2015.DING Yang.Numerical simulation of solid liquid two phase flow in a double layer stirring system[D].Shanghai:East China University of Science and Technology,2015.(in Chinese)
    23 徐中儒.试验回归设计[M].哈尔滨:黑龙江科技出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700