小球藻对奶牛场沼液处理能力及生物质生产的探究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nutrient removal and biomass production from dairy farm liquid digestate treatment using microalga Chlorella vulgaris
  • 作者:冯思然 ; 丰平仲 ; 朱顺妮 ; 王忠铭 ; 袁振宏
  • 英文作者:FENG Siran;FENG Pingzhong;ZHU Shunni;WANG Zhongming;YUAN Zhenhong;Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;CAS Key Laboratory of Renewable Energy;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;University of Chinese Academy of Sciences;
  • 关键词:小球藻 ; 奶牛场沼液 ; 营养去除 ; 生物质生产 ; 资源利用
  • 英文关键词:Chlorella;;dairy farm liquid digestate;;nutrition removal;;biomass production;;resource utilization
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国科学院广州能源研究所;中国科学院可再生能源重点实验室;广东省新能源与可再生能源研究开发与应用重点实验室;中国科学院大学;
  • 出版日期:2018-10-12 17:24
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发项目(2016YFB0601004);; 广东省自然科学基金研究团队项目(2016A030312007);; 广州市科技计划项目珠江科技新星专项(201610010155)
  • 语种:中文;
  • 页:HGSZ201901026
  • 页数:7
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:237-243
摘要
为资源化处理奶牛场沼液、探究小球藻Chlorella vulgaris NIES-227对奶牛场沼液的处理能力以及生物质利用潜力,在柱式光生物反应器中利用小球藻处理沼液占比分别为25%、50%、75%和100%4种不同浓度的未灭菌污水。研究结果显示,各浓度污水中总氮、总磷和COD的去除率分别为36.0%~92.5%、42.8%~100%和6.9%~32.2%。在沼液占比为25%的污水中氮磷的去除率最高,氨氮、总氮和总磷的去除效率分别可达99.9%、91.0%和100%。微藻在低浓度沼液(25%~50%)中生长状态良好,在沼液占比为50%的污水中可获得最高生物质产率393.6 mg/(L·d)。但是在高浓度沼液(75%~100%)中微藻生长受到一定抑制,导致氮磷的去除效果变差。培养期间细菌的数量增长显著,促进了COD的去除。各浓度沼液生物质中总脂、总糖和蛋白质含量分别为13.2%~32.2%、12.3%~27.6%和16.2%~30.9%。实验数据表明,低浓度沼液能产生更多高能量组分的生物质,适合用作生物燃料的开发;高浓度沼液能产生含较多蛋白质的生物质,更适合用作动物饲料。
        In this study, the treatment performance of dairy farm liquid digestate by freshwater microalga Chlorella vulgaris NIES-227 was investigated and the potential of biomass utilization was evaluated. In columnphotobioreactors, Chlorella vulgaris was used to treat wastewaters containing unsterilized liquid digestate atconcentrations of 25%, 50%, 75%, and 100%. The results showed that the removal of total nitrogen(TN), totalphosphorus(TP) and COD were 36.0%—92.5%, 42.8%—100% and 6.9%—32.2%, respectively. The microalgaeexhibited the maximum removal efficiencies of nitrogen and phosphorus in 25% liquid digestate, and the maximumremovals of ammonia nitrogen(NH3-N), TN and TP were 99.9%, 91.0% and 100%, respectively. The microalgae grew well in low concentrations of liquid digestate(25%—50%), and the highest biomass productivity was obtainedin 50% liquid digestate with the value of 393.6 mg/(L · d). However, microalgal growth was inhibited in higherconcentrations of liquid digestate(75%—100%), which led to the decreases of the removal of nitrogen andphosphorus. The number of bacteria increased significantly during the cultivation among all the treatment groups,which was beneficial to the COD removal. The contents of total lipid, total sugar and protein in biomass harvestedfrom different concentrations of liquid digestate were 13.2%—32.2%, 12.3%—27.6% and 16.2%—30.9%,respectively. The experimental data show that low-concentration biogas slurry can produce more high-energy components of biomass, which is suitable for biofuel development; high-concentration biogas slurry can produce biomass with more protein, which is more suitable for animal feed.
引文
[1]万风,王海燕,周岳溪,等.养猪废水处理技术研究进展[J].农业灾害研究, 2012, 2(1):25-29.Wan F, Wang H Y, Zhou Y X, et al. Research progress on the processing technology of piggery wastewater[J]. Journal of Agricultural Catastrophology, 2012, 2(1):25-29.
    [2] Feng C, Sugiura N, Shimada S, et al. Development of a high performance electrochemical wastewater treatment system[J].Journal of Hazardous Materials, 2003, 103(1/2):65-78.
    [3] Wang Y, Ho S H, Cheng C L, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment[J].Bioresource Technology, 2016, 222:485-497.
    [4] Ji M K, Abou-Shanba R A I, Seongheon K, et al. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2for nutrient removal and biomass production[J].Ecological Engineering, 2013, 58(13):142-148.
    [5] Oswald W J, Gotaas H B, Golueke C G, et al. Algae in waste treatment[J]. Sewage&Industrial Wastes, 1957, 29(4):437-457.
    [6] Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering, 2006, 101(2):87-96.
    [7] Wen Y, He Y, Ji X, et al. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage[J]. Bioresource Technology,2017, 243:247-253.
    [8]李岩,周文广,张晓东,等.微藻培养技术处理猪粪厌氧发酵废水效果[J].农业工程学报, 2011, 27(13):101-104.Li Y, Zhou W G, Zhang X D, et al. Effect of microalgae culture on treatment of wastewater from anaerobic digested swine manure[J].Translations of the Chinese Society of Agricultural Engineering,2011, 27(13):101-104.
    [9]靳红梅,常志州,叶小梅,等.江苏省大型沼气工程沼液理化特性分析[J].农业工程学报, 2011, 27(1):291-296.Jin H M, Chang Z Z, Ye X M, et al. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province[J]. Translations of the Chinese Society of Agricultural Engineering, 2011, 27(1):291-296.
    [10]舒庆.奶牛场废水培养产油微藻研究[D].北京:中国科学院大学, 2014.Shu Q. Microalgae cultivation utilizing dairy wastewater[D].Beijing:University of Chinese Academy of Sciences, 2014.
    [11]孙中亮,冯雪珂,李丹,等.小球藻净化沼液的预处理方法[J].生物学杂志, 2017, 34(3):99-104.Sun Z L, Feng X K, Li D, et al. Different pretreatment methods for biogas slurry purification by Chlorella vulgaris[J]. Journal of Biology, 2017, 34(3):99-104.
    [12] Bigogno C, Khozin-Goldberg I, Boussiba S, et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid[J].Phytochemistry, 2002, 60(5):497-503.
    [13] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3):350-356.
    [14]王忠江,隋超,王泽宇,等.小球藻对不同沼液添加量培养液的适应性及净化效果[J].农业工程学报, 2017, 33(3):221-226.Wang Z J, Sui C, Wang Z Y, et al. Adaptation of Chlorella to culture liquid with different biogas slurry adding proportion and its purified effect[J]. Translations of the Chinese Society of Agricultural Engineering, 2017, 33(3):221-226.
    [15]王愿珠,程鹏飞,刘德富,等.生物膜贴壁培养小球藻净化猪粪沼液废水的效果[J].环境科学, 2017, 38(8):3354-3361.Wang Y Z, Cheng P F, Liu D F, et al. Purification effect of piggery wastewater with Chlorella pyrenoidosa by immobilized biofilmattached culture[J]. Environmental Science, 2017, 38(8):3354-3361.
    [16] He P J, Mao B, LüF, et al. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters[J].Bioresource Technology, 2013, 146(10):562-568.
    [17] Chen R, Li R, Deitz L, et al. Freshwater algal cultivation with animal waste for nutrient removal and biomass production[J].Biomass&Bioenergy, 2012, 39(39):128-138.
    [18] Cai T, Park S Y, Li Y. Nutrient recovery from wastewater streams by microalgae:status and prospects[J]. Renewable&Sustainable Energy Reviews, 2013, 19(1):360-369.
    [19] Tam N F, Wong Y S. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp[J]. Environmental Pollution,1989, 58(1):19-34.
    [20] Emerson K, Russo R C, Lund R E, et al. Aqueous ammonia equilibrium calculations:effect of pH and temperature[J]. Journal of the Fisheries Research Board of Canada, 1975, 32(12):2379-2383.
    [21] Lewin R A. Extracellular polysaccharides of green algae[J]. Revue Canadienne De Microbiologie, 1956, 2(7):665-672.
    [22] Min M, Wang L, Li Y, et al. Cultivating Chlorella sp. in a pilotscale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal[J]. Applied Biochemistry&Biotechnology, 2011, 165(1):123-137.
    [23]高影影.富油海洋微藻的筛选及营养条件对其生长和油脂积累的影响[D].南京:南京农业大学, 2013.Gao Y Y. Screening of oil-rich marine microalgae and the effect of nutritional conditions on the growth and lipid accumulation of it[D]. Nanjing:Nanjing Agricultural University, 2013.
    [24] Huo S, Wang Z, Zhu S, et al. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China[J]. Bioresource Technology,2012, 121(7):76-82.
    [25]朱顺妮,王亚杰,黄伟,等.缺氮培养对小球藻碳水化合物和油脂积累的影响[J].太阳能学报, 2016, 37(8):2118-2122.Zhu S N, Wang Y J, Huang W, et al. Effect of nitrogen starvation culture on carbohydrate and lipid accumulation in Chlorella sp.[J]. Acta Energiae Solaris Sinica, 2016, 37(8):2118-2122.
    [26] Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus[J]. Phytochemistry, 2006,67(7):696-701.
    [27] Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium[J]. Bioresour. Technol.,2011, 102(1):101-105.
    [28] Rodolfi L, Chini Z G, Bassi N, et al. Microalgae for oil:strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology&Bioengineering, 2009, 102(1):100-112.
    [29] Feng P, Deng Z, Hu Z, et al. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors[J].Bioresource Technology, 2011, 102(22):10577-10584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700