射频等离子体诱导合成MoO_2-Mo_2N复合催化剂及其在合成气制低碳醇中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Radio frequency plasma induced synthesis of MoO_2-Mo_2N catalyst and its application in synthesis of higher alcohols from syngas
  • 作者:王亚文 ; 侯亮 ; 屈皓 ; 李建立 ; 苏海全 ; 谷晓俊
  • 英文作者:WANG Yawen;HOU Liang;QU Hao;LI Jianli;SU Haiquan;GU Xiaojun;Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,School of Chemistry and Chemical Engineering,Inner Mongolia University;Inner Mongolia Key Laboratory of Coal Chemistry,School of Chemistry and Chemical Engineering,Inner Mongolia University;
  • 关键词:射频等离子体 ; 氮化钼 ; 氧化钼 ; 合成气 ; 低碳醇
  • 英文关键词:radio frequency plasma;;molybdenum nitride;;molybdenum oxide;;syngas;;higher alcohols
  • 中文刊名:SXSZ
  • 英文刊名:Journal of Shaanxi Normal University(Natural Science Edition)
  • 机构:内蒙古大学化学化工学院内蒙古自治区稀土材料化学与物理重点实验室;内蒙古大学化学化工学院内蒙古自治区煤炭化学重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:陕西师范大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.181
  • 基金:国家自然科学基金(21476118);; 内蒙古自治区“草原英才”创新团队基金(201201);; 内蒙古自治区应用技术研究与开发资金(201702023,515330303)
  • 语种:中文;
  • 页:SXSZ201901010
  • 页数:8
  • CN:01
  • ISSN:61-1071/N
  • 分类号:66-73
摘要
通过射频等离子体改性体相Mo_2N制备了MoO_2-Mo_2N复合催化剂,并考察了其在合成气制低碳醇反应中的催化性能。利用XRD、TEM、XPS、CO-TPD对改性前后的催化剂进行了表征,结果发现在等离子体处理过程中,体相Mo_2N可与表面氧原子发生结构重组,产生了更多的活性位点,且生成的MoO_2与Mo_2N间存在一定的相互作用。所制得的MoO_2-Mo_2N复合催化剂的催化性能较体相Mo_2N有所提升,在350℃反应温度下,CO转化率达到32.7%,醇选择性达到34.03%,醇类时空产率达到79.5mg/(g·h)。
        MoO_2-Mo_2N composite catalyst was prepared by modifying bulk phase Mo_2N via RF plasma technique,and its catalytic performance in higher alcohols synthesis from syngas was investigated.The catalysts were characterized by XRD,TEM,XPS and CO-TPD.It was found that during the plasma treatment,the bulk phase Mo_2N can recombine with the surface oxygen atoms,which resulted in more active sites on the catalyst.Also there is certain interaction between MoO_2and Mo_2N.The catalytic performance of the prepared MoO_2-Mo_2N composite catalyst is improved compared with that of the bulk phase Mo_2N.At the reaction temperature of 350℃,the CO conversion rate,the alcohol selectivity,and the alcohol space-time yield reach32.7%,34.03%,and 79.5mg/(g·h)respectively.
引文
[1]STEVENS R R.Process for producing alcohols from synthesis gas:US 4752622A[P].1988.
    [2]WANG N,LI J,LIU X,et al.Remarkable enhancement to the catalytic performance of molybdenum sulfide catalysts via in situ decomposition method for higher alcohols synthesis from syngas[J].RSC Advances,2016,6:112356-112362.
    [3]BOAHENE P E,SURISETTY V R,SAMMYNAIK-EN R,et al.Higher alcohol synthesis using K-doped CoRhMoS2/MWCNT catalysts:influence of pelletization,particle size and incorporation of binders[J].Topics in Catalysis,2014,57(6):538-549.
    [4]HOU G,CHENG B,DING F,et al.Well dispersed silicon nanospheres synthesized by RF thermal plasma treatment and their high thermal conductivity and dielectric constant in polymer nanocomposites[J].RSC Advances,2015,5(13):9432-9440.
    [5]KUMAR S,SELVARAJAN V,KUMAR S,et al.Spheroidization of metal and ceramic powders in thermal plasma jet[J].Computational Materials Science,2006,36(4):451-456.
    [6]ATTRI P,ARORA B,CHOI E H.Utility of plasma:a new road from physics to chemistry[J].RSC Advances,2013,3(31):12540-12567.
    [7]ISHIGAKI T.Synthesis of functional oxide nanoparticles through RF thermal plasma processing[J].Plasma Chemistry&Plasma Processing,2017:1-22.
    [8]VOLLATH D.Plasma synthesis of nanopowders[J].Journal of Nanoparticle Research,2008,10(1S):39-57.
    [9]MEYYAPPPAN M.Plasma nanotechnology:past,present and future[J].Journal of Physics D:Applied Physics,2011,44(44):174002.
    [10]PFENDER E.Thermal plasma technology:where do we stand and where are we going?[J].Plasma Chemistry and Plasma Processing,1999,19(1):1-31.
    [11]LI Y L,ISHIGAKI T.Spheroidization of titanium carbide powders by induction thermal plasma processing[J].Journal of the American Ceramic Society,2004,84(9):1929-1936.
    [12]OUKACINE L,GITZHOFER F,ABATZOGLOU N,et al.Application of the induction plasma to the synthesis of two dimensional steam methane reforming Ni/Al2O3,catalyst[J].Surface&Coatings Technology,2006,201(5):2046-2053.
    [13]ZHANG H,CAO T,CHENG Y.Preparation of fewlayer graphene nanosheets by radio-frequency induction thermal plasma[J].Carbon,2015,86:38-45.
    [14]WILDEN J,WANk A,BYKAVA A.DC thermal plasma CVD synthesis of coatings from liquid single source SiBCN and SiCNTi precursors[J].Surface&Coatings Technology,2005,200(1/2/3/4):612-615.
    [15]SUZUKI M,KAGAWA M,SYONO Y,et al.Synthesis of ultrafine single-component oxide particles by the spray-ICP technique[J].Journal of Materials Science,1992,27(3):679-684.
    [16]KATO Y,KAGAWA M,SYONO Y.Component distribution in plasma-deposited ultrafine powders of binary(Cr2O3,Fe2O3,SnO2)-Al2O3,systems[J].Materials Letters,1998,35(3/4):266-269.
    [17]CHAI X,SHANG S,LIU G,et al.Characterization of Ni/γ-Al2O3catalyst prepared by atmospheric high frequency cold plasma jet for CO2 reforming of CH4[J].Chinese Journal of Catalysis,2010,319(3):353-359.
    [18]NASEH M V,KHODADADI A A,MORTAZAVI Y,et al.Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment[J].Carbon,2010,48(5):1369-1379.
    [19]ZHANG L,DIAO S,NIE Y,et al.Photocatalytic patterning and modification of graphene[J].Journal of the American Chemical Society,2011,133(8):2706-13.
    [20]LIU J,XUE Y,ZHANG M,et al.Graphene-based materials for energy applications[J].MRS Bulletin,2012,37(12(Graphene Fundamentals and Functionalities)):1265-1272.
    [21]LAURENT-BROCQ M,JOB N,ESKENAZI D,et al.Pt/C catalyst for PEM fuel cells:control of Pt nanoparticles characteristics through a novel plasma deposition method[J].Applied Catalysis B:Environmental,2014,147(7):453-463.
    [22]LIU C J,ZHAO Y,LI Y,et al.Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts[J].ACS Sustainable Chemistry&Engineering,2014,2:3-13.
    [23]HOU G,CHENG B,DING F,et al.Well dispersed silicon nanospheres synthesized by RF thermal plasma treatment and their high thermal conductivity and dielectric constant in polymer nanocomposites[J].RSCAdvances,2015,5(13):9432-9440.
    [24]ATTRI P,ARORA B,CHOI E H.Utility of plasma:a new road from physics to chemistry[J].RSC Advances,2013,3(31):12540-12567.
    [25]WEI Z B.Surface species and the stability ofγ-Mo2N[J].Solid State Ionics,1997,101:761-767.
    [26]YAO M,LI Q,HOU G,et al.Dopant-controlled morphology evolution of WO3polyhedra synthesized by RF thermal plasma and their sensing properties[J].ACS Applied Materials&Interfaces,2015,7(4):2856-2866.
    [27]PORTELA L,GRANGE P,DELMON B.XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J].Journal of Catalysis,1995,156(2):243-254.
    [28]WEI Z B Z,GRANGE P,DELMON B.XPS and XRDstudies of fresh and sulfided Mo2N[J].Applied Surface Science,1998,135(1):107-114.
    [29]NAGAI M,GOTO Y,IRISAWA A,et al.Catalytic activity and surface properties of nitrided molybdena-alumina for carbazole hydrodenitrogenation[J].Journal of Catalysis,2000,191(1):128-137.
    [30]KIM G T,PARK T K,CHUNG H,et al.Growth and characterization of chloronitroaniline crystals for optical parametric oscillators:I.XPS study of Mobased compounds[J].Applied Surface Science,1999,152(1/2):35-43.
    [31]LIAKAKOU E T,HERACLEOUS E.Transition metal promoted K/Mo2C as efficient catalysts for CO hydrogenation to higher alcohols[J].Catalysis Science&Technology,2015,6(4):1106-1119.
    [32]ZHANG J W.Probing into surface sites of fresh Mo2N/Al2O3,Mo2C/Al2O3and MoP/Al2O3catalysts by CO adsorption and in situ FT-IR spectroscopy[J].China Petroleum Processing&Petrochemical Technology,2010,12(4):43-45.
    [33]WU Z,MAROTOVALIENTE A,GUERRERORUIZA,et al.Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts[J].Physical Chemistry Chemical Physics,2003,5(8):1703-1707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700