电磁复合场对激光熔注增强颗粒分布梯度的调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Gradient Control of Laser Melt Injection Reinforcement Particles by Electromagnetic Compound Field
  • 作者:王梁 ; 胡勇 ; 林英华 ; 李珏辉 ; 姚建华
  • 英文作者:Wang Liang;Hu Yong;Lin Yinghua;Li Juehui;Yao Jianhua;Institue of Laser Advanced Manufacturing, Zhejiang University of Technology;Zhejiang Provincial Collaborative Innovation Center of High-End Laser Manufacturing Equipment;
  • 关键词:激光技术 ; 激光熔注 ; 电磁复合场 ; 洛伦兹力 ; 增强颗粒 ; 分布梯度
  • 英文关键词:laser technique;;laser melt injection;;electromagnetic compound field;;Lorentz force;;reinforcement particles;;distribution gradient
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:浙江工业大学激光先进制造研究院;浙江省高端激光制造装备协同创新中心;
  • 出版日期:2018-05-24 14:22
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.502
  • 基金:国家重点研发计划(2017YFB1103601);; 国家自然科学基金青年基金(51705464);; 国家自然科学基金面上项目(51475429)
  • 语种:中文;
  • 页:JJZZ201810010
  • 页数:8
  • CN:10
  • ISSN:31-1339/TN
  • 分类号:67-74
摘要
对激光熔注过程进行了多物理场仿真,分析了电磁复合场参数对熔池内部流场、温度场和颗粒分布的影响规律,并通过实验进行了验证。结果表明,电磁复合场的施加可抑制熔池流速,但对其温度场的分布无明显影响。当施加与重力同向的定向洛伦兹力时,大部分增强颗粒集中在熔注层上层区域;反之,大部分增强颗粒集中在下层区域。
        The multi-physics simulation of laser melt injection process is conducted and the effects of electromagnetic compound field parameters on the distributions of the flow field, temperature field and particles within the molten pools are investigated, which is also verified by the experiment. The results indicate that, the addition of the electromagnetic compound field can suppress the fluid speed, but does not obviously influence the temperature field distribution. When the directional Lorentz force and the gravity force are in the same direction, the majority of reinforcement particles is trapped in the upper region of the laser melt injection layer, conversely, the majority is in the bottom region.
引文
[1] Vreeling J A,OcelíkV, Pei Y T, et al. Laser melt injection in aluminum alloys: On the role of the oxide skin[J]. Acta Materialia, 2000, 48(17): 4225-4233.
    [2] Li L, Liu D, Chen Y, et al. Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection[J]. Acta Materialia, 2009, 57(12): 3606-3614.
    [3] Li F Q, Chen Y B, Li L Q. Microstructure and wear property of surface modification layer produced by laser melt injection WC on Q235 steel[J]. Transactions of the China Welding Institution, 2010, 31(4): 28-32. 李福泉, 陈彦宾, 李俐群. Q235钢表面激光熔注WC涂层的微观组织及耐磨性[J]. 焊接学报, 2010, 31(4): 28-32.
    [4] Song S Y, Wang L, Hu Y, et al. Graded coating produced by laser melt injection under steady magnetic field[J]. Chinese Journal of Lasers, 2016, 43(5): 0503005. 宋诗英, 王梁, 胡勇, 等. 稳态磁场辅助激光熔注制备梯度涂层[J]. 中国激光, 2016, 43(5): 0503005.
    [5] Hu Y, Wang L, Li J H, et al. Effect of orientation Lorentz force on molten pool exhaust in laser cladding[J]. Chinese Journal of Lasers, 2018, 45(8): 0802001. 胡勇, 王梁, 李珏辉, 等. 定向洛伦兹力增强激光熔覆熔池排气作用的研究[J]. 中国激光, 2018, 45(8): 0802001.
    [6] Xu H, Zheng Q G, Ding Z H, et al. Study on laser cladding hard alloy with electromagnetic stirring[J]. Laser Technology, 2005, 29(5): 449-451, 469. 许华, 郑启光, 丁周华, 等. 电磁搅拌辅助激光熔覆硬质合金的研究[J]. 激光技术, 2005, 29(5): 449-451, 469.
    [7] Zhang X, Li R Y, Zhao Z Y, et al. Influence of external longitudinal magnetic field on weld joint morphology and microstructure in laser-metal inert gas hybrid welding[J]. Chinese Journal of Lasers, 2017, 44(8): 0802008. 张勋, 李若杨, 赵泽洋, 等. 外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响[J]. 中国激光, 2017, 44(8): 0802008.
    [8] Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Physics Procedia, 2010, 5: 317-326.
    [9] Gatzen M, Tang Z, Vollertsen F. Effect of electromagnetic stirring on the element distribution in laser beam welding of aluminium with filler wire[J]. Physics Procedia, 2011, 12(A): 56-65.
    [10] Yu Q, Wang C S. Numerical simulation and experimental analysis of electromagnetic stirring assisted laser additive manufacturing Ni45 alloy[J]. Chinese Journal of Lasers, 2018, 45(4): 0402003. 于群, 王存山. 电磁搅拌辅助激光增材制造Ni45合金数值模拟与实验分析[J]. 中国激光, 2018, 45(4): 0402003.
    [11] Bachmann M, Avilov V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321.
    [12] Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578-591.
    [13] Wang L, Yao J H, Hu Y, et al. Suppression effect of a steady magnetic field on molten pool during laser remelting[J]. Applied Surface Science, 2015, 351: 794-802.
    [14] Crowe C T, Troutt T R, Chung J N. Numerical models for two-phase turbulent flows[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 11-43.
    [15] Yue X A. Solid-liquid two phase flow[M]. Beijing: Petroleum Industry Press, 1996: 72. 岳湘安. 液-固两相流基础[M]. 北京: 石油工业出版社, 1996: 72.
    [16] Bachmann M, Avilov V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700