原位成核生长法制备草莓状多级结构聚合物-有机硅复合微球
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of raspberry-like polystyrene/organosilica composite microspheres with hierarchical structure by in-situ nucleation and growth method
  • 作者:毛贻静 ; 潘栋宇 ; 张潇天 ; 曹志海 ; 戚栋明 ; 孙阳艺
  • 英文作者:MAO Yijing;PAN Dongyu;ZHANG Xiaotian;CAO Zhihai;QI Dongming;SUN Yangyi;Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education, Zhejiang Sci-Tech University;
  • 关键词:原位成核生长 ; 草莓状 ; 有机硅 ; 复合微球 ; 动力学可控
  • 英文关键词:In situ nucleation and growth;;raspberry-like;;organosilica;;composite microspheres;;kinetic-controlled
  • 中文刊名:ZJSG
  • 英文刊名:Journal of Zhejiang Sci-Tech University(Natural Sciences Edition)
  • 机构:浙江理工大学先进纺织材料与制备技术教育部重点实验室;
  • 出版日期:2018-11-01 15:02
  • 出版单位:浙江理工大学学报(自然科学版)
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金青年基金项目(51703203);; 浙江省自然基金青年基金项目(LQ17E030004)
  • 语种:中文;
  • 页:ZJSG201902005
  • 页数:8
  • CN:02
  • ISSN:33-1338/TS
  • 分类号:38-45
摘要
报道了通过原位成核生长法高效构筑草莓状多级结构聚合物-有机硅复合微球的方法。以聚乙烯基吡咯烷酮(PVP)为稳定剂制备得到的粒径均一的聚苯乙烯(PS)微球为中心核粒子,吸附自组装的十六烷基三甲基溴化铵(CTAB)胶束后,与水解过的硅烷偶联剂(BTEE/TEOS)混合,得到草莓状的PS@oSiO_2复合微球。通过引入CTAB胶束对核种子粒子进行改性及对后续生长有机硅进行预水解,通过调控CTAB胶束液用量及有机硅水解缩合反应条件,可有效控制PS微球和有机硅前驱物之间的反应动力学,最终可控制备表面凸起小粒子粒径及覆盖度可调的草莓状PS@oSiO_2复合微球。该研究不仅有利于了解原位成核生长法制备草莓状复合微球的形成机制,还对开发高性能浸润性表界面具有重要意义。
        This paper presents an in situ nucleation and growth method to efficiently construct raspberry-like polymer-organosilica composite microspheres with hierarchical structure. In the approach, PS microspheres with uniform particle size prepared by using polyvinylpyrrolidone(PVP) as the stabilizer served as the core particles and then adsorbed self-assembled CTAB micelles. Then, PS microspheres were mixed with hydrolyzed organosilane(BTEE/TEOS) to gain raspberry-like PS@oSiO_2 composite microspheres. The CTAB micelles were introduced to modify the core seed particles and pre-hydrolyze the subsequent grown organosilica. Reaction kinetics between PS microspheres and organosilica precursor could be effectively controlled by adjusting the amount of CTAB micelles and the hydrolysis and condensation reaction conditions of organosilica. Finally, the raspberry-like PS@oSiO_2 composite microspheres with adjustable particle size and coverage were controllably prepared. This study not only helps to understand the formation mechanism of the raspberry-like composite microspheres prepared by in situ nucleation and growth method, but also has great significance in developing high-performance infiltrating surface interfaces.
引文
[1] Mansaray H B, Rowe A D, Phillips N, et al. Modelling fundamental arene-borane contacts: Spontaneous formation of a dibromoborenium cation driven by interaction between a borane Lewis acid and an arene π system[J]. Chemical Communications, 2011, 47(45): 12295-12297.
    [2] Ming W, Wu D, van Benthem R, et al. Superhydrophobic films from raspberry-like particles[J]. Nano Letters, 2005, 5(11): 2298-2301.
    [3] Qian Z, Zhang Z C, Song L Y, et al. A novel approach to raspberry-like particles for superhydrophobic material[J]. Journal of Materials Chemistry, 2009, 19(9): 1297-1304.
    [4] Du X, Liu X M, Chen H M, et al. Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings[J]. The Journal of Physical Chemistry C, 2009, 113(21): 9063-9070.
    [5] Chen M, Wu L M, Zhou S X, et al. Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method[J]. Macromolecules, 2004, 37(25): 9613-9619.
    [6] Chen M, Zhou S X, You B, et al. A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres[J]. Macromolecules, 2005, 38(15): 6411-6417.
    [7] Fan X L, Jia X K, Liu Y, et al. Tunable wettability of hierarchical structured coatings derived from one-step synthesized raspberry-like poly (styrene-acrylic acid) particles[J]. Polymer Chemistry, 2015, 6(5): 703-713.
    [8] Yu M G, Wang Q, Zhang M, et al. Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil-water separation[J]. RSC Advances, 2017, 7(63): 39471-39479.
    [9] Zhang X T, Sun Y Y, Mao Y J, et al. Controllable synthesis of raspberry-like PS-SiO2 nanocomposite particles via pickering emulsion polymerization[J]. RSC Advances, 2018, 8(7): 3910-3918.
    [10] Yang Y N, Wan J J, Niu Y T, et al. Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery[J]. Chemistry of Materials, 2016, 28(24): 9008-9016.
    [11] Hao N J, Jayawardana K W, Chen X, et al. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1040-1045.
    [12] Teng Z G, Wang S J, Su X D, et al. Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels[J]. Advanced Materials, 2014, 26(22): 3741-3747.
    [13] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854.
    [14] Sun Y Y, Yin Y, Chen M, et al. One-step facile synthesis of monodisperse raspberry-like P (S-MPS-AA) colloidal particles[J]. Polymer Chemistry, 2013, 4(10): 3020-3027.
    [15] Dang M, Li W, Zheng Y Y, et al. Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase[J]. Journal of Materials Chemistry B, 2017, 5(14): 2625-2634.
    [16] Carbone L, Cozzoli P D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms[J]. Nano Today, 2010, 5(5): 449-493.
    [17] Zhang L, Zhang F, Dong W F, et al. Magnetic-mesoporous Janus nanoparticles[J]. Chemical Communications, 2011, 47(4): 1225-1227.
    [18] Sun H, He J T, Wang J Y, et al. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation[J]. Journal of the American Chemical Society, 2013, 135(24): 9099-9110.
    [19] Sun Y Y, Chen M, Zhou S, et al. Controllable synthesis and surface wettability of flower-shaped silver nanocube-organosilica hybrid colloidal nanoparticles[J]. ACS Nano, 2015, 9(12): 12513-12520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700