钛酸锂/石墨烯复合负极材料的制备及电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and electrochemical properties of Li_4Ti_5O_(12)/graphene composite as an anode material for Li-ion batteries
  • 作者:张利辉 ; 徐宇兴 ; 刘振法 ; 魏爱佳 ; 李文
  • 英文作者:ZHANG Lihui;XU Yuxing;LIU Zhenfa;WEI Aijia;LI Wen;State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences;Institute of Energy Resources, Hebei Academy of Sciences;University of Chinese Academy of Sciences;Zhongke Langfang Institute of Process Engineering;
  • 关键词:固相球磨 ; 喷雾干燥 ; 钛酸锂 ; 石墨烯 ; 负极材料
  • 英文关键词:solid-state ball milling method;;spray drying;;lithium titanate;;graphene;;anode material
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国科学院过程工程研究所多相复杂系统国家重点实验室;河北省科学院能源研究所;中国科学院大学;中科廊坊过程工程研究院;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:河北省重点基础研究(17964407D);; 河北省科技计划(17394411D,16294403D)
  • 语种:中文;
  • 页:HGJZ201902029
  • 页数:7
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:245-251
摘要
以Li_2CO_3、锐钛矿TiO_2和石墨烯为原料,采用固相球磨及喷雾干燥相结合的方法制备钛酸锂和钛酸锂/石墨烯复合负极材料。用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)表征了样品的晶体结构及形貌。通过恒流充放电测试样品的电化学性能,考察不同石墨烯添加量对钛酸锂材料电化学性能的影响。当石墨烯添加量质量分数为1%时,钛酸锂/石墨烯复合负极材料(LTO-G-2)具有优异的倍率性能及循环稳定性。在0.2C、0.5C、1C、3C、5C和10C倍率下的充电比容量为172.9mA·h/g、165.7mA·h/g、163.5mA·h/g、157.4mA·h/g、154.0mA·h/g和143.5mA·h/g。5C倍率下经历200次循环,容量保持率为94.8%。循环伏安测试(CV)表明LTO-G-2样品的极化程度是最小的。交流阻抗测试(EIS)结果显示LTO-G-2的电荷转移阻抗(69.6Ω)小于纯的钛酸锂的电荷转移阻抗(140.5Ω)。
        Li_4Ti_5O_(12) and Li_4Ti_5O_(12)/graphene composite have been successfully prepared by a solid-state ball milling and spray drying method using Li_2CO_3, TiO_2 and graphene as starting materials. X-raydiffraction(XRD), scanning electron microscopy(SEM) and Raman spectroscopy were used to confirm thestructure and morphology of the materials. The effects of the amount of graphene on the electrochemicalproperties of Li_4Ti_5O_(12) were investigated by the galvanostatic charge-discharge tests. When 1% graphenewas added, the Li_4Ti_5O_(12)/graphene composite(LTO-G-2) exhibited excellent performance with the chargecapacities of 172.9mA·h/g, 165.7mA·h/g, 163.5mA·h/g, 157.4mA·h/g, 154.0mA·h/g and 143.5mA·h/gat rates of 0.2C, 0.5C, 1C, 3C, 5C and 10 C, respectively. Moreover, LTO-G-2 showed a charge capacity retention of 94.8%after 200 cycles at a rate of 5C.Cyclic voltammetry tests(CV)showed that LTO-G-2 had the smallest polarization.Electrochemical impedance(EIS)tests showed that the charge transfer resistance of LTO-G-2(69.6Ω)was lower than that of neat LTO(140.5Ω).
引文
[1]李雷,杨春,谢晓峰.我国储能产业发展现状、机遇与挑战[J].化工进展, 2011, 30(s1):748-754.LI L, YANG C, XIE X F. Current situation, opportunities andchallenges of energy storage industry in China[J]. Chemical Industryand Engineering Progress, 2011, 30(s1):748-754.
    [2] YANG J, ZHOU X Y, ZOU Y L, et al. A hierarchical porous carbonmaterial for high power lithium ion batteries[J]. Electrochimica Acta,2011, 56(24):8576-8581.
    [3] TAN L P, LU Z, TAN H T, et al. Germanium nanowires-based carboncomposite as anodes for lithium-ion batteries[J]. Journal of PowerSources, 2012, 206:253-258.
    [4] KITAURA H, HAYASHI A, TADANAGA K, et al. High-rateperformance of all-solid-state lithium secondary batteries usingLi4Ti5O12electrode[J]. JournalofPowerSources, 2009,189(1):145-148.
    [5]闵凡奇,李硕,党国举,等.基于中国专利的钛酸锂发展趋势分析[J].化工进展, 2017, 36(s1):578-585.MIN Fanqi, LI Shuo, DANG Guoju, et al. Analysis development trendof Li4Ti5O12based on Chinese patent[J]. Chemical Industry andEngineering Progress, 2017, 36(s1):578-585.
    [6]温书剑,张熠霄,陈阳,等.锂离子电池负极材料钛酸锂研究进展[J].功能材料, 2017, 12(47):12038-12049.WEN Shujian, ZHANG Yixiao, CHEN Yang, et al. Research progressof Li4Ti5O12anode material for lithium ion batteries[J]. FunctionalMaterials, 2017, 12(47):12038-12049.
    [7] PRAKASH A, MANIKANDAN P, RAMESHA K, et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12as high-rateperformanceLi-ionbatteryanode[J].Chemistry of Materials,2010,22(9):2857-2863.
    [8] HARIDAS A K, SHARMA C S, RAO T N. Donut-shaped Li4Ti5O12structures as a high performance anode material for lithium ionbatteries[J]. Small, 2015, 11(3):290-294.
    [9] ZHAO B, DENG X, RAN R, et al. Facile synthesis of a 3Dnanoarchitectured Li4Ti5O12electrode for ultrafast energy storage[J].Advance Energy Material, 2016, 6(4):1500924-1500935.
    [10] QI Y L, HUANG Y D, JIA D Z, et al. Preparation and characterizationof novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochimica Acta,2009, 54(21):4772-4776.
    [11] CAPSONI D, BINI M, MASSAROTTI V, et al. Cations distribution and valence states in Mn-substituted Li4Ti5O12structure[J]. Chemistry ofMaterials, 2008, 20(13):4291-4298.
    [12] TIAN B B, XIANG H F, ZHANG L, et al. Niobium doped lithiumtitanate as a high rate anode material for Li-ion batteries[J].Electrochimica Acta, 2010, 55(19):5453-5458.
    [13] YI T F, LIU H P, ZHU Y R, et al. Improving the high rate performanceof Li4Ti5O12through divalent zinc substitution[J]. Journal of PowerSources, 2012, 215:258-265.
    [14] LI X, QU M Z, HUAI Y J, et al. Preparation and electrochemicalperformance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ionbattery[J]. Electrochimica Acta, 2010, 55(8):2978-2982.
    [15]张明,张宝,吴燕妮.石墨烯/钛酸锂复合材料制备研究[J].稀有金属材料与工程, 2015, 44(8):1990-1993.ZHANG Ming, ZHANG Bao, WU Yanni. Study on the preparation ofgraphene/Li4Ti5O12composites[J]. Rare Metal Materials andEngineering, 2015, 44(8):1990-1993.
    [16] XUE R, YAN J W, JIANG L, et al. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materialsfor hybrid electrochemical super capacitors[J]. Materials Chemistryand Physics, 2015, 160:375-382.
    [17] XIANG H F, TIAN B B, LIAN P C, et al. Sol-gel synthesis andelectrochemical performance of Li4Ti5O12/graphene composite anodefor lithium-ion batteries[J]. Journal of Alloys and Compounds, 2011,509(26):7205-7209.
    [18] TANG Y F, HUANG F Q, ZHAO W, et al. Synthesis of graphenesupported Li4Ti5O12nanosheets for high rate battery application[J].Journal of Materials Chemistry, 2012, 22:11257-11260.
    [19] SHI Y, GAO J, ABRUNA H D, et al. Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method[J]. Nano Energy, 2014, 8:297-304.
    [20] PANG S, ZHAO Y, ZHANG C, et al. Electrostatic assembly ofmesoporous Li4Ti5O12/graphene hybrid as high-rate anode materials[J].Scripta Materialia, 2013, 69(2):171-174.
    [21] CHEN Y T, ZHANG H Y, LI Y Y, et al. Electrochemical performanceof Li4Ti5O12/carbon nanotubes/graphene composite as an anodematerial in lithium-ion batteries[J]. International Journal of HydrogenEnergy, 2017, 42(10):7195-7201.
    [22] LIU H P, WEN G W, BI S F, et al. Enhanced rate performance ofnanosized Li4Ti5O12/graphene composites as anode material by a solidstate-assembly method[J]. Electrochimica Acta, 2015, 171:114-120.
    [23]王浩,沙鸥,乔智,等.两步固相法合成具有优良性能的钛酸锂[J].电源技术, 2015, 39(4):682-684.WANG Hao, SHA Ou, QIAO Zhi, et al. Preparation of improvedLi4Ti5O12by two-step solid state method[J]. Chinese Journal of PowerSources, 2015, 39(4):682-684.
    [24]闻雷,刘成名,宋仁升,等.石墨烯材料的储锂行为及其潜在应用[J].化学学报, 2004, 72:333-344.WEN Lei, LIU Chengming, SONG Rensheng, et al. Lithium storagecharacteristics and possible applications of graphene materials[J]. ActaChimica Sinica, 2004, 72:333-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700