Fe@Fe_2O_3/石墨烯复合材料的制备与电化学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and characterization of Fe@Fe_2O_3/graphene composites as anode materials for lithium ion batteries
  • 作者:吴超 ; 郑明森 ; 闫慧青 ; 黄建 ; 刘若琦 ; 庄全超
  • 英文作者:Wu Chao;Zheng Ming-sen;Yan Hui-qing;Huang Jian;Liu Ruo-qi;Zhuang Quan-chao;BTR New Energy Materials Inc.;College of Chemistry and Chemical Engineering, Xiamen University;School of Materials Science and Engineering,China University of Mining and Technology;
  • 关键词:锂离子电池 ; 石墨烯 ; 复合材料 ; 电化学性能
  • 英文关键词:Lithium ion battery;;graphene;;composite;;electrochemistry property
  • 中文刊名:TSJS
  • 英文刊名:Carbon Techniques
  • 机构:深圳市贝特瑞新能源材料股份有限公司;厦门大学化工学院;中国矿业大学材料学院;
  • 出版日期:2019-04-28
  • 出版单位:炭素技术
  • 年:2019
  • 期:v.38;No.221
  • 语种:中文;
  • 页:TSJS201902013
  • 页数:6
  • CN:02
  • ISSN:22-1147/TQ
  • 分类号:40-45
摘要
采用水热反应和高温固相反应方法合成了Fe@Fe_2O_3/石墨烯复合材料。运用扫描电子显微镜(SEM)、X射线衍射(XRD)、光电子能谱仪(XPS)和透射电镜(TEM)对复合材料进行了物理表征。结果表明,Fe@Fe_2O_3/石墨烯复合材料中纳米颗粒均匀分布在石墨烯中,且纳米颗粒具有核壳结构,提出了核壳结构的形成机理。充放电测试结果显示,Fe@Fe_2O_3/GNS复合材料在100mA/g下经过90次循环后,可逆容量仍有959.3 mA·h/g,库伦效率保持在86.4%。此外,在5000 mA/g电流充放电条件下,Fe@Fe_2O_3/GNS复合材料循环280次后,可逆容量维持在515 mA·h/g,表现出较好的大电流充放电循环寿命。
        The Fe@Fe_2O_3/graphene composites have been firstly synthesized by using a hydrothermal reaction followed by an in situ thermal reduction. The Fe@Fe_2O_3/graphene composites are characterized by SEM, XRD, XPS and TEM, which display that the nanoparticles with core-shell structure disperse homogeneously in graphene, and the formation mechanism of the core-shell structure is proposed. The charge and discharge test shows that the Fe@Fe_2O_3/graphene composites display a reversible charge capacity of 959.3 mA·h/g up to 90 cycles at a current density of 100 mA/g, which is 86.4% retention of the first charge capacity. In addition, at a current density of 5000 mA/g, the Fe@Fe_2O_3/graphene composites reach 515 mA·h/g after 280 cycles, exhibiting an excellent long-life cycling performance.
引文
[1]Zhu Y D, Huang Y, Wang M Y, et al. Novel carbon coated core-shell heterostructure NiC o2O4@NiOgrown on carbon cloth as flexible lithium-ion battery anodes[J]. Ceram Int, 2018, 44(17):21690-21696.
    [2]Zhu X H, Jan S S, Zan Feng, et al. Hierarchically branched TiO2@SnO2nanofibers as high performance anodes for lithium-ion batteries[J]. Mater Res Bull, 2017,96:405-410.
    [3]Zhao B, Huang S Y, Wang T, et al. Hollow SnO2@Co3O4core-shell spheres encapsulated in three dimensional graphene foams for high performance supercapacitors and lithium-ion batteries[J]. J Power Sources, 2015, 298:83-86.
    [4]李佳玮,厉英,孔亚州.核壳结构三元锂离子电池正极材料研究进展[J].材料导报, 2016, 30:187-192.
    [5]Su L W, Zhou Z, Shen P W. Core-shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries[J].Electrochim Acta, 2013, 87:180-188.
    [6]Zhang L F, He W J, Ling M, et al. Cu@MoO2@C nanocomposite with stable yolk-shell structure for high performance lithium-ion batteries[J]. J Alloys Compd,2018, 7:301-307.
    [7]Xu X, Shen K, Wen M, et al. Facile synthesis of threedimensional Cu/Fe3O4nanowires as binder-free anode for lithium-ion batteries[J]. Appl Surf Sci, 2018, 450:356-360.
    [8]Wang Y X, Wu Y, Xing L L, et al. CoMoO4/Fe2O3coreshell nanorods with high lithium-storage performance as the anode of lithium-ion battery[J]. J Alloys Compd,2016, 689:655-660.
    [9]Yin S M, Ye L W, Yuan Y F, et al. Cu2O@TiO2coreshell nanocube composite as improved performance anode materials for lithium-ion batteries[J]. Mater Lett, 2018,225:149-154.
    [10]Rao C N R, Sood A K, Subrahmanyam K S. Graphene:The new two-dimensional nanomaterial[J]. Angew Chem Int Edit, 2009, 48(42):7752-7778.
    [11]Yoo E J, Kim J, Hosono E. Large reversible Li storage of graphene nanosheet famllies for use in rechargeable lithium ion batteries[J]. Nano Lett, 2008, 8(8):2277-2282.
    [12]Blomgren G E.Electrolytes for advanced batteries[J]. J Power Sources, 1999, 81-82:112-118.
    [13]Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J Electrochem Soc,1979, 126(12):2047-2051.
    [14]Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices[J]. Chem Mater, 2007, 19(17):4129-4141.
    [15]Zielinski J, Zglinicka I, Znak L, et al. Reduction of Fe2O3with hydrogen[J]. Appl Catal A-Gen, 2010, 381:191-196.
    [16]Zhang X, Alloul O, He Q L, et al. Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets[J]. Polymer, 2013, 54:3594-3604.
    [17]Grugeon S, Laruelle S, Dupont L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sci, 2003, 5:895-904.
    [18]钟军华,王兴庆,马均耀,等.纳米氧化铁粉制取微细铁粉的研究[J].粉末冶金工业, 2006, 16(2):19-22.
    [19]Zhukovskii Y F, Kotomin E A, Balaya P, et al. Enhanced interfacial lithium storage in nano composites of transition metals with LiF and Li2O:Comparison of DFT calculations and experimental studies[J]. Solid State Sci, 2008, 10:491-454.
    [20]Jamnik J, Maier J. Nanocrystallinity effects in lithium battery materials aspects of nano-ionics[J]. Phys Chem Chem Phys, 2003, 5:5215-5219.
    [21]Hochella M F, Lower S K, Maurice P A, et al. Nanominerals, mineral nanoparticles, and earth systems[J]. Science, 2008, 319:1631-1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700