页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Migration and distribution of complex fracture proppant in shale reservoir volume fracturing
  • 作者:潘林华 ; 张烨 ; 程礼军 ; 陆朝晖 ; 康远波 ; 贺培 ; 董兵强
  • 英文作者:Pan Linhua;Zhang Ye;Cheng Lijun;Lu Zhaohui;Kang Yuanbo;He Pei;Dong Bingqiang;National Joint Engineering Research Center for Shale Gas Exploration and Development//Chongqing Institute of Geology and Mineral Resources;MLR Key Laboratory of Shale Gas Exploration//Chongqing Institute of Geology and Mineral Resources;
  • 关键词:页岩 ; 储集层 ; 体积压裂 ; 复杂裂缝 ; 支撑剂 ; 运移与展布规律 ; 实验室试验系统
  • 英文关键词:Shale;;Reservoir;;Volume fracturing;;Complex fracture;;Proppant;;Migration and distribution;;Experimental system
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:页岩气勘探开发国家地方联合工程研究中心·重庆地质矿产研究院;国土资源部页岩气资源勘查重点实验室·重庆地质矿产研究院;
  • 出版日期:2018-05-29 14:10
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.295
  • 基金:国家自然科学基金青年科学基金项目“页岩水平井‘多段分簇’压裂支撑剂分流与展布机理研究”(编号:51604050);; 重庆市社会民生科技创新专项“页岩水平井‘多段分簇’压裂支撑剂运移与展布评价仪器研发”(编号:cstc2016shmszx90003)
  • 语种:中文;
  • 页:TRQG201805009
  • 页数:10
  • CN:05
  • ISSN:51-1179/TE
  • 分类号:67-76
摘要
为了研究页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律,构建了大尺度复杂裂缝支撑剂运移与展布评价实验系统,测试了次裂缝角度、注入排量、加砂浓度、支撑剂粒径、压裂液黏度等对支撑剂运移与展布的影响,研究了主/次裂缝中支撑剂的运移与展布规律。结果表明:(1)裂缝中流体流态随裂缝支撑高度增加逐步由层流向紊流转变;(2)支撑剂在裂缝中的运移方式主要包括悬浮运移和滑移运动;(3)分支前主裂缝的支撑剂展布形态与次裂缝角度、注入排量、加砂浓度和支撑剂粒径等参数相关,其中注入排量为最主要的影响因素;(4)分支后主裂缝的支撑剂质量比与次裂缝角度、注入排量、液体黏度、加砂浓度和支撑剂粒径呈正比,同次裂缝与主裂缝的流量比呈反比;(5)分支后次裂缝的支撑剂质量比与注入排量、次裂缝与主裂缝的流量比、压裂液黏度呈正比,与次裂缝角度、加砂浓度和支撑剂粒径呈反比;(6)分支后主裂缝的砂堤前缘角度同加砂浓度、支撑剂粒径、次裂缝与主裂缝的流量比呈正比,与次裂缝角度、注入排量和压裂液黏度呈反比;(7)次裂缝的砂堤前缘角度同次裂缝角度、加砂浓度与支撑剂粒径呈正比,和注入排量、压裂液黏度、次裂缝与主裂缝的流量比呈反比。结论认为,该研究成果可以为页岩储层体积压裂支撑剂的优选和压裂方案设计提供理论支撑。
        In this paper, a large-scale experimental system was established to identify the migration and distribution laws of complex fracture proppant in shale reservoir volume fracturing. With this system, the effects of secondary fracture angle, fluid displacement, proppant concentration and size, fracturing fluid viscosity and other factors on the migration and distribution of proppant were tested, and the migration and distribution of proppant in primary/secondary fractures were analyzed. The following results were obtained. First, the fluid flow pattern in fractures transforms gradually from laminar flow into turbulent flow with the increase of fracture supporting height. Second, the migration modes of proppant in fractures mainly include suspended migration and gliding migration. Third, the distribution form of proppant in primary fractures before branching is related to secondary fracture angle, fluid displacement and proppant concentration and size, among which the fluid displacement is the most important factor. Fourth, the mass ratio of proppant in primary fractures after branching is proportional to the secondary fracture angle, fluid displacement, fracturing fluid viscosity and proppant concentration and size, and is inversely proportional to the flow ratio between secondary fractures and primary fractures. Fifth, the mass ratio of proppant in secondary fractures after branching is proportional to fluid displacement, fracturing fluid viscosity and flow ratio between secondary fractures and primary fractures, and is inversely proportional to secondary fracture angle and proppant concentration and size. Sixth, the angle at the leading edge of proppant bank in the primary fractures after branching is proportional to the proppant concentration and size and the flow ratio between secondary fractures and primary fractures, but is inversely proportional to secondary fracture angle, fluid displacement and fracturing fluid viscosity. Seventh, the angle at the leading edge of proppant bank in the secondary fractures after branching is proportional to the secondary fracture angle and the proppant concentration and size, but is inversely proportional to the fluid displacement, fracturing fluid viscosity and flow ratio between secondary fractures and primary fractures. In conclusion, the research results can provide a theoretical support for proppant optimization and program design of shale reservoir volume fracturing.
引文
[1]田同辉,陆正元,戚明辉,刘毅,冯明石.东营凹陷沙河街组页岩油储层微观孔隙结构研究[J].西南石油大学学报(自然科学版),2017,39(6):10-18.Tian Tonghui,Lu Zhengyuan,Qi Minghui,Liu Yi&Feng Mingshi.Study on microscopic pore structure of shale oil reservoir in Shahejie Formation in the Dongying sag[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(6):10-18.
    [2]孙可明,张树翠,辛利伟.页岩气储层层理方向对水力压裂裂纹扩展的影响[J].天然气工业,2016,36(2):45-51.Sun Keming,Zhang Shucui&Xin Liwei.Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation[J].Natural Gas Industry,2016,36(2):45-51.
    [3]侯冰,陈勉,李志猛,王永辉,刁策.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发,2014,41(6):763-768.Hou Bing,Chen Mian,Li Zhimeng,Wang Yonghui&Diao Ce.Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J].Petroleum Exploration and Development,2014,41(6):763-768.
    [4]潘林华,张烨,陆朝晖,邓智,柳凯誉.页岩储层复杂裂缝扩展研究[J].断块油气田,2016,23(1):90-94.Pan Linhua,Zhang Ye,Lu Zhaohui,Deng Zhi&Liu Kaiyu.Complex fracture propagation in shale gas reservoir[J].FaultBlock Oil&Gas Field,2016,23(1):90-94.
    [5]Daniels JL,Waters GA,Calvez J&Lassek JT.Contacting more of the Barnett shale through an integration of real-time microseismic monitoring,petrophysics,and hydraulic fracture design[C]//SPE Annual Technical Conference and Exhibition,11-14 November 2007,Anaheim,California,USA.DOI:http://dx.doi.org/10.2118/110562-MS.
    [6]李靓.压裂缝内支撑剂沉降和运移规律实验研究[D].成都:西南石油大学,2014.Li Liang.Study on proppant settlement and transport rule in fracturing[D].Chengdu:Southwest Petroleum University,2014.
    [7]Li Nianyin,Li Jun,Zhao Liqiang,Luo Zhifeng,Liu Pingli&Guo Yujie.Laboratory testing and numeric simulation on laws of proppant transport in complex fracture systems[C]//SPE Asia Pacific Hydraulic Fracturing Conference,24-26 August 2016,Beijing,China.DOI:http://dx.doi.org/10.2118/181822-MS.
    [8]Boyer JS,Maley DM&O'Neil BJ.Chemically enhanced proppant transport[C]//SPE Annual Technical Conference and Exhibition,27-29 October 2014,Amsterdam,The Netherlands.DOI:http://dx.doi.org/10.2118/170640-MS.
    [9]Bokane AB,Jain S,Deshpande YK&Crespo F.Transport and distribution of proppant in multistage fractured horizontal wells:A CFD simulation approach[C]//SPE Annual Technical Conference and Exhibition,30 September-2 October 2013,New Orleans,Louisiana,USA.DOI:http://dx.doi.org/10.2118/166096-MS.
    [10]张涛,郭建春,刘伟.清水压裂中支撑剂输送沉降行为的CFD模拟[J].西南石油大学学报(自然科学版),2014,36(1):74-82.Zhang Tao,Guo Jianchun&Liu Wei.CFD simulation of proppant transportation and settling in water fracture treatments[J].Journal of Southwest Petroleum University(Science&Technology Edition),2014,36(1):74-82.
    [11]Ray B,Lewis C,Martysevich V,Shetty DA,Walters HG,Bai J,et al.An investigation into proppant dynamics in hydraulic fracturing[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition,24-26 January 2017,The Woodlands,Texas,USA.DOI:http://dx.doi.org/10.2118/184829-MS.
    [12]Fernández ME,Baldini M,Pugnaloni LA,Sánchez M,Guzzetti AR&Carlevaro CM.Proppant transport and settling in a narrow vertical wedge-shaped fracture[C]//ARMA-2015-135,49th US Rock Mechanics/Geomechanics Symposium,28 June-1 July2015,San Francisco,California,USA.San Francisco:American Rock Mechanics Association,2015.
    [13]Shokir EMEMB&Al-Quraishi AA.Experimental and numerical investigation of proppant placement in hydraulic fractures[C]//Latin American&Caribbean Petroleum Engineering Conference,15-18 April 2007,Buenos Aires,Argentina.DOI:http://dx.doi.org/10.2118/107927-MS.
    [14]Inyang UA,Nguyen PD&Cortez J.Development and field applications of highly conductive proppant-free channel fracturing method[C]//SPE Unconventional Resources Conference,1-3April 2014,The Woodlands,Texas,USA.DOI:http://dx.doi.org/10.2118/168996-MS.
    [15]Wen Qingzhi,Jin Xiaochun,Shah SN&Li Yang.Experimental investigation of propped fracture network conductivity in naturally fractured shale reservoirs[C]//SPE Annual Technical Conference and Exhibition,30 September-2 October 2013,New Orleans,Louisiana,USA.DOI:http://dx.doi.org/10.2118/166474-MS.
    [16]Sahai R,Miskimins JL&Olson KE.Laboratory results of proppant transport in complex fracture systems[C]//SPE Hydraulic Fracturing Technology Conference,4-6 February 2014,The Woodlands,Texas,USA.DOI:http://dx.doi.org/10.2118/168579-MS.
    [17]Mack M,Sun J&Khadilkar C.Quantifying proppant transport in thin fluids:Theory and experiments[C]//SPE Hydraulic Fracturing Technology Conference,4-6 February 2014,The Woodlands,Texas,USA.DOI:http://dx.doi.org/10.2118/168637-MS.
    [18]Alotaibi MA&Miskimins JL.Slickwater proppant transport in hydraulic fractures:New experimental findings and scalable correlation[C]//SPE Annual Technical Conference and Exhibition,28-30 September 2015,Houston,Texas,USA.DOI:http://dx.doi.org/10.2118/174828-MS.
    [19]石豫.页岩气井水力压裂支撑剂沉降及运移规律研究[D].西安:西安石油大学,2016.Shi Yu.Study on proppant settlement and transport rule in shale gas hydraulic fracturing[D].Xi'an:Xi'an Shiyou University,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700