求解复杂边界的直接力浸入边界-格子Boltzmann耦合方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Direct Forcing Immersed Boundary-lattice Boltzmann Coupling Method for Solving Fluid Structure Interaction With Complex Boundary
  • 作者:江茂强 ; 张瑞 ; 柳朝晖
  • 英文作者:JIANG Mao-Qiang;ZHANG Rui;LIU Zhao-Hui;State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology;
  • 关键词:直接力浸入边界法 ; 格子Boltzmann方程 ; 多重力法 ; 复杂边界
  • 英文关键词:direct forcing-immersed boundary;;lattice Boltzmann equation;;multi-forcing scheme;;complex boundary
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:华中科技大学煤燃烧国家重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:工程热物理学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(No.15876075,No.51870676,No.51390494);; 煤燃烧国家重点实验室开放基金(No.FSKLCCA1802)
  • 语种:中文;
  • 页:GCRB201812022
  • 页数:6
  • CN:12
  • ISSN:11-2091/O4
  • 分类号:139-144
摘要
本文对直接力浸入边界-格子Boltzmann耦合方法中两种常用LB方程中引入外力项的方法(EBF和GZS模型)以及基于压力的He-Luo模型与基于密度的LBGK模型两种LB方程的方法分别进行了对比分析.结果表明对于不可压流动,GZS模型精度比EBF模型高,而He-Luo模型精度与比标准LBGK模型高.采用多重力法可有效减小直接力IB方法会出现的边界无滑移条件误差,发现数值边界相对物理边界产生外扩现象,通过边界内缩方法可以使得数值边界与物理边界重合,实现边界的真正无滑移条件.
        Two common schemes(EBF and GZS method) introducing external force term into LB equations in direct forcing immersed boundary-lattice Boltzmann method coupling method are analyzed comparatively. Meanwhile, two common LB models are considered which one is He-Luo equation based on pressure and the other is standard LBGK equation based on density. The results show that for incompressible flow, GZS scheme and He-Luo model is more accurate than EBF scheme and LBGK model, respectively. And the error of boundary non-slip condition can be reduced effectively by multi-direct forcing strategy. Furthermore, a phenomenon that numerical boundary slightly expanded from physical boundary is intuitively found. It can be effectively corrected and hence the non-slip condition can be sufficiently satisfied by further slightly retracting the numerical boundary to coincide with the physical boundary.
引文
[1] Peskin C S. Numerical Analysis of Blood Flow in the Heart[J]. Journal of Computational Physics, 1977, 25(3):220-252
    [2] Mittal R, Iaccarino G. Immersed Boundary Method[J].Annual Review of Fluid Mechanics, 2005, 14(37):239-261
    [3] Feng Z G, Michaelides E E. Proteus:a Direct Forcing Method in the Simulations of Particulate Flows[J]. Journal of Computational Physics, 2005, 202(1):20-51
    [4] Wu J, Aidun C K. Simulating 3D Deformable particle Suspensions Using Lattice Boltzmann Method with Discrete External Boundary Force[J]. International Journalfor Numerical Methods in Fluids, 2010, 62(7):765-783
    [5] Dupuis A, Chatelain P, Koumoutsakos P. An Immersed Boundary-Lattice-Boltzmann Method for the Simulation of the Flow Past an Impulsively Started Cylinder[J]. Journal of Computational Physics, 2008, 227(9):4486-4498
    [6] Guo Z, Zheng C, Shi B. Discrete Lattice Effects on the forcing Term in the Lattice Boltzmann Method[J]. Physical Review E, 2002, 65(4):046308(1-6)
    [7] Kang S K. Immersed Boundary Methods in the Lattice Boltzmann Equation for flow Simulation[M]. Texas A&M University, 2010
    [8] Kang S K, Hassan Y A. A Comparative Study of Directforcing Immersed Boundary-lattice Boltzmann Methods for Stationary Complex Boundaries[J]. International Journal for Numerical Methods in Fluids, 2011, 66(9):1132-1158
    [9] Eshghinejadfard A, Abdelsamie A, Janiga G, et al. Directforcing Immersed Boundary Lattice Boltzmann Simulation of Particle/fluid Interactions for Spherical and Nonspherical Particles[J]. Particuology, 2016, 25(2):93-103
    [10] Shan X, Chen H. Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components[J]. Physical Review E, 1993, 47(3):1815-1819
    [11] He X, Luo L S. Theory of the Lattice Boltzmann Method:From the Boltzmann Equation to the Lattice Boltzmann Equation[J]. Physical Review E, 1997, 56(6):6811-6817
    [12] Luo K, Wang Z,Fan J,et al. Full-scale Solutions to Particle-laden Flows:Multidirect Forcing and Immersed Boundary Method[J]. Physical Review E, 2007, 76(6):066709(1-9)
    [13] Wang Z, Fan J, Luo K. Combined Multi-direct Forcing and Immersed Boundary Method for Simulating Flows with Moving Particles[J]. International Journal of Multiphase Flow, 2008, 34(3):283-302
    [14] Uhlmann M. An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows[J].Journal of Computational Physics, 2005, 209(2):448-476
    [15] Su S W, Lai M C, Lin C A. An Immersed Boundary Technique for Simulating Complex Flows with Rigid Boundary[J]. Computers&Fluids, 2007, 36(2):313-324
    [16] Silva A L F L E, Silveira-Neto A, Damasceno J J R. Numerical Simulation of Two-dimensional Flows Over a Circular Cylinder Using the Immersed Boundary Method[J].Journal of Computational Physics, 2003, 189(2):351-370
    [17] Feng Z G, Michaelides E E. Robust Treatment of Noslip Boundary Condition and Velocity Updating for the Lattice-Boltzmann Simulation of Particulate flows[J].Computers&Fluids, 2009, 38(2):370-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700