甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development Characteristics and Reactivation Mechanism of the Jiangdingya Ancient Landslide in the Nanyu Town,Zhouqu County,Gansu Province
  • 作者:郭长宝 ; 任三绍 ; 李雪 ; 张永双 ; 杨志华 ; 吴瑞安 ; 金继军
  • 英文作者:GUO Changbao;REN Sanshao;LI Xue;ZHANG Yongshuang;YANG Zhihua;WU Ruian;JIN Jijun;Institute of Geomechanics,Chinese Academy of Geological Sciences;Tianjin Institute of Geology and Mineral Resources,China Geological Survey;School of Engineering and Technology,China University of Geosciences,Beijing;
  • 关键词:白龙江 ; 古滑坡复活 ; 活动断裂 ; 江顶崖 ; 形成机理
  • 英文关键词:Bailongjiang River;;ancient landslide reactivation;;active fault;;Jiangdingya;;formation mechanism
  • 中文刊名:XDDZ
  • 英文刊名:Geoscience
  • 机构:中国地质科学院地质力学研究所;中国地质调查局天津地质调查中心;中国地质大学(北京)工程技术学院;
  • 出版日期:2019-02-15
  • 出版单位:现代地质
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金项目(41731287,41877279);; 中国地质调查局项目(DD20160271)
  • 语种:中文;
  • 页:XDDZ201901020
  • 页数:12
  • CN:01
  • ISSN:11-2035/P
  • 分类号:208-219
摘要
江顶崖古滑坡位于甘肃舟曲白龙江左岸,区内地形地貌和地质构造复杂,多高山峡谷且河流纵坡降大,晚第四纪以来强烈活动的坪定—化马断裂带从区内通过,造成地层岩性极为破碎,古滑坡发育,且复活特征明显。在遥感解译和现场调查的基础上,对江顶崖古滑坡的发育特征和复活机理进行分析,认为江顶崖古滑坡堆积体方量为41×106~49×106m3,为在地质历史上形成的巨型古滑坡,位于坪定—化马断裂带及其次级断裂形成的断裂带内。根据滑坡不同位置和坡体结构特征,将江顶崖古滑坡共划分为古滑坡崩塌区、滑坡岩体变形区、古滑坡堆积区等3个大区,以及4个古滑坡复活区等7个区域,坡体内断错陡坎和拉裂缝极为发育。江顶崖古滑坡的中部复活区是主要变形和破坏区,1991年和2018年的复活区均位于该区域内,2018年复活滑坡体体积为480×104~550×104m3,为缓慢滑动的牵引式滑坡。江顶崖古滑坡复活机理复杂,在断裂活动和地震作用下形成的破碎岩土体和斜坡结构特征为滑坡复活提供了内因,强降雨作用增加了坡体自重并弱化了岩土体的力学强度,在暴雨期形成的强烈河流侵蚀作用进一步切割坡脚,从而诱发滑坡的复活;因此,江顶崖古滑坡是在内外动力耦合作用下形成的典型古滑坡复活案例。目前江顶崖古滑坡区域内的4个滑坡复活区仍处于蠕滑状态,在强降雨和河流侵蚀等作用下极可能再次发生复活,并造成堵江和毁坏国道等灾害事件。
        The Jiangdingya ancient landslide is located at the left bank of the Bailongjiang River in Zhouqu County,Gansu Province,China,where the terrain and geological structure are very complex,and with alpine gorge and large gradient river. The Pingding-Huama fault zone,which has been active since Late Quaternary,passes through the landslide area. The lithology of the stratum is extremely broken under the impact of active faults,and the ancient landslide is also extremely developed with obvious reactivation characteristics. Based onthe remote sensing interpretation and field investigation,this paper analyzed the development characteristics and reactivation mechanism of the Jiangdingya ancient landslide. It is believed that the Jiangdingya ancient landslide accumulation body is nearly 41 × 106 to 49 × 106 m3,which was formed in the geological history,and the giant ancient landslide is located in the Pingding-Huama active fault zone. According to the different positions of the landslide and the slope structural characteristics,the Jiangdingya ancient landslide is divided into 7 areas,including 3 major areas,i. e. the ancient landslide collapse area,the landslide rock deformation area and the ancient landslide accumulation area,and 4 ancient landslide reactivation zones. The broken fault scarp and cracks are extremely developed in this slope. According to the study,the central reactivation zone of the Jiangdingya ancient landslide is the main deformation and destruction area,and the reactivation zones in 1991 and2018 are located in this area. The 2018 reactivation landslide volume is about 480 × 104 to 550 × 104 m3,and it was a slow sliding trailed landslide. The reactivation mechanism of the Jiangdingya ancient landslide is very complex,and the fractured rock mass and slope structure formed under fault activity and earthquake provide internal factors for landslide reactivation. The heavy rainfall increases the self-weight of the slope and weakens the mechanics of the rock and soil. The strong intensity of river erosion formed during the rainstorm period further cuts the slope foot,thus inducing the landslide reactivation. Therefore,it is a typical ancient reactivation landslide formed under the coupling effect of internal and external dynamics factors. At present,the four landslide reactivation zones in the Jiangdingya ancient landslide area are still creeping,and the reactivation will occur again under the action of heavy rainfall and river erosion,and cause disasters such as blocking the river and destroying the national highway.
引文
[1]戚筱俊.古滑坡复活实例分析[J].西部探矿工程,2002(2):125-126.
    [2]张永双,吴瑞安,郭长宝,等.古滑坡复活问题研究进展与展望[J].地球科学进展,2018,33(7):728-740.
    [3]张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.
    [4]王恭先,徐峻岭,刘光代,等.滑坡学与滑坡防治技术[M].北京:中国铁道出版,2004:1-50.
    [5] IVERSON R M,GEORGE D L,ALLSTADT K,et al. Landslide mobility and hazards:implications of the 2014 Oso disaster[J].Earth&Planetary Science Letters,2015,412:197-208.
    [6]黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展,2005,20(3):292-297.
    [7] SASSA K,HE B. Dynamics and prediction of earthquake and rainfall-induced rapid landslides and submarine megaslides[J].Landslides:Global Risk Preparedness,2013,DOI:10. 1007/978-3-642-22087-6-13.
    [8]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008:235-241.
    [9] BAI S B,WANG J,ZHANG Z G,et al. Combined landslide susceptibility mapping after Wenchuan Earthquake at the Zhouqu Segment in the Bailongjiang Basin,China[J]. Catena,2012,99:18-25.
    [10]黎志恒,文宝萍,贾贵义,等.甘肃省白龙江流域滑坡分布规律及其主控因素[J].兰州大学学报(自然科学版),2015,51(6):768-776.
    [11]郭长宝,张永双,王涛,等.南北活动构造带中段地质灾害与重大工程地质问题概论[J].地质力学学报,2017,23(5):707-722.
    [12]孟兴民,陈冠,郭鹏,等.白龙江流域滑坡泥石流灾害研究进展与展望[J].海洋地质与第四纪地质,2013(4):1-15.
    [13]杨为民,黄晓,张春山,等.白龙江流域坪定—化马断裂带滑坡特征及其形成演化[J].吉林大学学报(地球科学版),2014,44(2):574-583.
    [14]蒋秀姿,文宝萍,蒋树,等.甘肃舟曲锁儿头滑坡活动的主控因素分析[J].吉林大学学报(地球科学版),2015,45(6):1798-1807.
    [15]舟曲县人民政府.舟曲:抢险救援工作有序进行[EB/OL].[2018-07-20]. http://www. zqx. gov. cn/zhouquyaowen/article/9433.
    [16]陈洪凯,李吉均.白龙江流域第四纪以来地貌发育基本模式研究[J].重庆交通学院学报,1997,16(1):15-20.
    [17]胡向德,黎志恒,魏洁,等.舟曲县三眼峪沟特大型泥石流的形成和运动特征[J].水文地质工程地质,2011,38(4):82-87.
    [18]焦赟,姚正学,董耀刚.舟曲南桥滑坡稳定性分析及治理对策研究[J].甘肃地质,2012(1):59-63.
    [19]黄晓,杨为民,张春山,等.舟曲泄流坡滑坡变形特征及其形成机理[J].地质力学学报,2013,19(2):178-187.
    [20] JIANG S,WEN B P,ZHAO C,et al. Kinematics of a giant slowmoving landslide in Northwest China:Constraints from high resolution remote sensing imagery and GPS monitoring[J]. Journal of Asian Earth Sciences,2016,123:34-46.
    [21]王景荣,祁龙,蔡祥兴.甘肃省舟曲县南峪滑坡分析[J].水土保持通报,1994,14(1):57-60.
    [22]陈洪天.甘肃舟曲县南峪大滑坡简介[J].西北水电,1991(4):63-63.
    [23]穆鹏.甘肃舟曲江顶崖滑坡成因及稳定性分析[J].中国水利,2011(4):50-52.
    [24]徐维迎,张楠.中国地质环境监测院(防治技术指导中心)派出专家组赴甘肃指导地质灾害防治工作[EB/OL].[2018-07-19]. http://www. cigem. cgs. gov. cn/gzdt_4839/dwdt_4861/201807/t20180719_463738. html.
    [25]郭长宝,张永双,蒋良文,等.川藏铁路沿线及邻区环境工程地质问题概论[J].现代地质,2017,31(5):887-889.
    [26]刘筱怡,杨志华,郭长宝,等.基于SBAS-InSAR的鲜水河断裂带蠕滑型滑坡特征研究[J].现代地质,2017,31(5):965-977.
    [27]李晓,李守定,陈剑,等.地质灾害形成的内外动力耦合作用机制[J].岩石力学与工程学报,2008,27(9):1792-1806.
    [28]俞晶星,郑文俊,袁道阳,等.西秦岭西段光盖山—迭山断裂带坪定—化马断裂的新活动性与滑动速率[J].第四纪研究,2012,32(5):957-967.
    [29]刘兴旺,袁道阳,邵延秀,等.甘肃迭部—白龙江南支断裂中东段晚第四纪构造活动特征[J].地球科学与环境学报,2015,37(6):111-119.
    [30]李淑贞,戴霜,王华伟,等.白龙江地区断裂构造与滑坡分布及发生关系[J].兰州大学学报(自然科学版),2015,51(2):145-152.
    [31] GUO C B,MONTGOMERY D R,ZHANG Y S,et al. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone,Tibetan Plateau,China[J]. Geomorphology,2015,248:93-110.
    [32] SCHEIDEGGER A E,艾南山.武都地区的滑坡和泥石流[J].水土保持学报,1987,1(2):19-27.
    [33]唐永仪.新构造运动在陇南滑坡泥石流形成中的作用[J].兰州大学学报:自然科学版,1992,28(4):152-160.
    [34]李树德.武都滑坡剪切滑动带特征[J].水土保持研究,1999,6(4):38-40.
    [35]任进舟.南峪滑坡与小震活动[J].地震工程学报,1993(2):94-96.
    [36] REN D,LESLIE L,LYNCH M,et al. Why was the august 2010Zhouqu landslide so powerful?[J]. Geography,Environmental,Sustainability,2013,6(1):67-79.
    [37] WANG G L. Lessons learned from protective measures associated with the 2010 zhouqu debris flow disaster in China[J]. Natural Hazards,2013,69(3):1835-1847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700