780nm声光调制器的温度特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Characteristics of 780nm Acousto-Optic Modulator
  • 作者:吕挺 ; 段玉雄 ; 项静峰 ; 任伟 ; 吕德胜 ; 汪斌 ; 李琳 ; 李唐 ; 屈求智
  • 英文作者:Lü Ting;Duan Yuxiong;Xiang Jingfeng;Ren Wei;Lü Desheng;Wang Bin;Li Lin;Li Tang;Qu Qiuzhi;Key Laboratory for Quantum Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:测量 ; 声光调制器 ; 温度响应 ; 空间应用 ; 激光冷却
  • 英文关键词:measurement;;acousto-optic modulator;;temperature response;;space application;;laser cooling
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院上海光学精密机械研究所量子光学重点实验室;中国科学院大学;
  • 出版日期:2017-05-02 13:05
  • 出版单位:光学学报
  • 年:2017
  • 期:v.37;No.425
  • 基金:中国科技部仪器项目(2013YQ09094304)
  • 语种:中文;
  • 页:GXXB201708019
  • 页数:6
  • CN:08
  • ISSN:31-1252/O4
  • 分类号:164-169
摘要
对780nm声光调制器(AOM)的温度响应进行了详细的理论计算,发现AOM衍射光偏振角的温度响应系数远大于衍射效率和衍射角的温度响应系数。针对AOM衍射光偏振角的温度响应,在地面实验室环境下对其进行了实验验证。在空间微重力环境下,AOM的温度响应可能会成为制约空间项目光学平台工作温度范围和性能指标提高的主要因素之一。基于AOM在实际空间应用中的脉冲工作模式,通过仿真建模给出了AOM声光晶体温度随环境温度的变化曲线,并给出了优化措施。
        Temperature response of 780 nm acousto-optic modulator(AOM)is calculated theoretically in detail.The research shows that the temperature response coefficient of polarization angle of diffraction light of AOM is much larger than that of diffraction efficiency and diffraction angle.Aiming at the temperature response of polarization angle of diffraction light of AOM,it is experimentally verified in the ground laboratory environment.In space microgravity environment,temperature response of AOM may become one of the main reasons that restricts the improvement of the operating temperature range and performance index of optical platform in space program.Based on the pulse working mode of AOM in practical space application,the variation curve between the temperatures of the acousto-optic crystal in AOM and environmental temperature is given by simulation modeling.And the optimization measures are given.
引文
[1]LüDesheng,Liu Liang,Wang Yuzhu.Space cold atomic clock and its scientific applications[J].Manned Spaceflight,2011,17(1):47-51.吕德胜,刘亮,王育竹.空间冷原子钟及其科学应用[J].载人航天,2011,17(1):47-51.
    [2]Laurent P,Abgrall M,Jentsch C,et al.Design of the cold atom PHARAO space clock and initial test results[J].Applied Physics B:Lasers and Optics,2006,84(4):683-690.
    [3]Lévèque T,Faure B,Esnault F X,et al.PHARAO laser source flight model:design and performances[J].Review of Scientific Instruments,2015,86(3):033104.
    [4]Laurent P,Jentsch C,Clairon A,etal.The PHARAO space clock:results on the ground operation of the engineering model[C].Geneva:2007IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum,2007:1106-1112.
    [5]Leger B,Stringhetti L,Massonnet D,et al.Results of the ACES engineering model system test[C].Noordwijk:EFTF-2010 24th European Frequency and Time Forum,2010:1-8.
    [6]Esnault F X,Grosjean O,Delaroche C,et al.PHARAO flight model:Integration and"on ground"performances tests[C].Taipei:2014IEEE International Frequency Control Symposium(FCS),2014:1-3.
    [7]Duncker H,Hellmig O,Wenzlawski A,et al.Ultrastable,Zerodur-based optical benches for quantum gas experiments[J].Applied Optics,2014,53(20):4468-4474.
    [8]Qu Qiuzhi,Wang Bin,LüDesheng,et al.Principle and progress of cold atom clock in space[J].Chinese J Lasers,2015,42(9):0902006.屈求智,汪斌,吕德胜,等.空间冷原子钟原理样机地面测试结果[J].中国激光,2015,42(9):0902006.
    [9]Qu Qiuzhi,Xia Wenbin,Wang Bin,et al.Integrating design of a compact optical system for space laser cooling application[J].Acta Optica Sinica,2015,35(6):0602003.屈求智,夏文兵,汪斌,等.空间激光冷却原子集成光学平台设计[J].光学学报,2015,35(6):0602003.
    [10]Ren W,Sun Y G,Wang B,et al.Highly reliable optical system for a rubidium space cold atom clock[J].Applied Optics,2016,55(13):3607-3614.
    [11]Dalibard J,Cohen-Tannoudji C.Laser cooling below the Doppler limit by polarization gradients:simple theoretical models[J].Journal of the Optical Society of America B,1989,6(11):2023-2045.
    [12]Ungar P J,Weiss D S,Riis E,et al.Optical molasses and multilevel atoms:theory[J].Journal of the Optical Society of America B,1989,6(11):2058-2071.
    [13]Metcalf H J,van der Straten P.Laser cooling and trapping[M].Dordrecht:Springer Science&Business Media,2012.
    [14]Zhang S G.Frequency shift due to blackbody radiation in a cesium atomic fountain and improvement of the clock performance[C].Paris:UniversitéPierre et Marie Curie-Paris VI,2004:75-77.
    [15]Feng Yuanyuan,Li Wujun,Yu Jintao.Analysis of polarization diffraction characteristics in acousto-optic modulator[J].Journal of Xi′an Technological University,2013,33(6):449-452.冯媛媛,李武军,于金涛.声光调制器偏振衍射特性的分析[J].西安工业大学学报,2013,33(6):449-452.
    [16]Uchida N.Optical properties of single-crystal paratellurite(TeO2)[J].Physical Review B,1971,4(10):3736-3745.
    [17]蔡起善.二氧化碲晶体的结构与物理性能[J].压电与声光,1981(2):55-60.
    [18]Zhang Chunguang.The technology of the acousto-optic tunable filter based on the haperspectral imaging system[D].Harbin:Harbin Institute of Technology,2008:27-28.张春光.基于超光谱成像系统的声光可调滤波技术研究[D].哈尔滨:哈尔滨工业大学,2008:27-28.
    [19]Ohmachi Y,Uchida N.Temperature dependence of elastic,dielectric,and piezoelectric constants in TeO2single crystals[J].Journal of Applied Physics,1970,41(6):2307-2311.
    [20]Zhong Xihua.Modern fundamentals of optics[M].Beijing:Beijing University Press,2012:98-103.钟锡华.现代光学基础[M].北京:北京大学出版社,2012:98-103.
    [21]Robertson D I,Fitzsimons E D,Killow C J,et al.Construction and testing of the optical bench for LISA pathfinder[J].Classical&Quantum Gravity,2013,30(8):085006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700