管壳式相变蓄热谷电利用装置热性能实验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on the Heat Performance of Shell-Tube Based PCM Storage by Utilizing Off-Peak Power
  • 作者:段文军 ; 陆勇
  • 英文作者:DUAN Wen-Jun;LU Yong;School of Energy and Environment, Southeast University;
  • 关键词:相变蓄热 ; 谷电利用 ; 管壳式 ; 热性能
  • 英文关键词:latent heat storage;;off-peak power;;shell-tube based;;thermal performance
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:东南大学能源与环境学院;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(No.51376048)
  • 语种:中文;
  • 页:GCRB201905029
  • 页数:11
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:211-221
摘要
针对谷电转化为热能存储在相变材料中难以被提取的问题,建立了相变蓄热谷电利用装置热性能实验平台。遴选出十二水硫酸铝铵作为相变材料,压铸铝电加热板作为热源,管壳式蓄热箱体作为换热结构。实验中关注了蓄放热过程中PCM的温度趋势及影响因素,重点探究了HTF流量、串联盘管数目及HTF流向3类工况对构建的蓄热装置的放热性能的影响。实验结果表明:PCM的温升趋势主要受距离热源的距离、相变材料初温、温差引起的自然对流效应大小等3个因素的影响;放热过程中,采用水流自下而上的顺连方式及减小流量增加串联盘管数都能提升放热性能,7管顺连,2L·min-1子工况的有效释能时间和,较7管顺连,3 L·min~(-1)子工况分别提升97%、39.7%。有效放热效率分别为179.2min、 91.3%
        The thermal energy is difficult to extract when the electricity energy is conversed into heat, which limits the application of heat storage by utilizing off-peak power. The research platform of thermal performance of latent heat storage system was built with the aluminum alloy hexahydrate selected as PCM, die-casting aluminum electrical heating plate as the heat source, shell-tube thermal storage box as the heat transfer structure. The experiment focused on the temperature change of PCM and the influencing factors in the process of heat charging and heat discharging. It shows that there are main reasons for the different temperature rise of the PCM in the circumferential and axial direction: the distance of PCM from the electricity heat plate, the initial temperature of PCM and the natural convection effect. The emphasis was put on the heat discharging process, where the effects of three variable operating conditions on the heat release performance of the thermal storage device were discussed. The results show that the heat performance could be enhanced when the condition of heat transfer fluid flowing from the bottom of the pipe was adopted. In addition,reducing the water flow rate and increasing the number of coil could also gain a higher performance.When pumping water from the bottom of every coil to the top side, the effective release time and efficiency of the 2 L-min~(-1) sub-condition are 179.2 min and 91.3% respectively, which are respectively increased by 97% and 39.7% compared with the equipment operating under the flow rate of3 L·min-1.
引文
[1] DING N, DUAN J, XUE S, et al. Overall Review of Peaking Power in China:Status Quo, Barriers and Solutions[J]. Renewable&Sustainable Energy Reviews, 2015, 42:503-516
    [2]刘文毅,张伟德,徐钢,等.典型压缩空气蓄能系统流程与参数优化[J].工程热物理学报,2013, 34(9):1615-1620LIU Wenyi, ZHANG Weide, XU Gang, et al. Process and Parameters Optimization of a Typical Compressed Air Energy Storage(CAES)System[J]. Journal of Engineering Thermophysics, 2013, 34(9):1615-1620
    [3] XI C, YANG H, LIN L, et al. Experimental Studies on a Ground Coupled Heat Pump With Solar Thermal Collectors for Space Heating[J]. Energy, 2011,36(8):5292-5300
    [4] Dincer I S Dost, Li X. Performance Analyses of Sensible Heat Storage Systems for Thermal Applications[J].International Journal of Energy Research, 1997, 21(12):1157-1171
    [5] Singh H, Saini R P, Saini J S. A Review on Packed Bed Solar Energy Storage Systems[J]. Renewable&Sustainable Energy Reviews, 2010, 14(3):1059-1069
    [6] Dan N N, Haghighat F. Thermal Energy Storage with Phase Change Material—A State-of-the Art Review[J].Sustainable Cities&Society, 2014, 10:87-100
    [7] Regin A F, Solanki S C, Saini J S. Heat Transfer Characteristics of Thermal Energy Storage System using PCM Capsules:A Review[J]. Renewable&Sustainable EnergyReviews, 2008, 12(9):2438-2458
    [8] Helm M, Keil C, Hiebler S, et al. Solar Heating and Cooling System with Absorption Chiller and Low Temperature Latent Heat Storage:Energetic Performance and Operational Experience[J]. International Journal of Refrigerar tion, 2009, 32(4):596-606
    [9] Nakaso K, Teshima H, Yoshimura A, et al. Extension of Heat Transfer Area using Carbon Fiber Cloths in Latent Heat Thermal Energy Storage Tanks[J]. Chemical Engineering&Processing Process Intensification, 2008, 47(5):879-885
    [10] Vyshak N R, Jilani G. Numerical Analysis of Latent Heat Thermal Energy Storage System[J]. Energy Conversion&Management, 2007, 48(7):2161-2168
    [11]吴斌,邢玉明.适用于废热回收的相变蓄热装置数值模拟与实验研究[J].热能动力工程,2011,26(1):53-57WU Bin, XING Yuming. Numerical Simulation and Experimental Study of a Phase Change Heat Accumulation System Applicable for Waste of Heat Recovery[J]. Journal of Engineering for Thermal Energy and Power, 2011,26(1):53-57
    [12] Hosseini M J, Ranjbar A A, Sedighi K, et al. A Combined Experimental and Computational Study on the Melting Behavior of a Medium Temperature Phase Change Storage Material Inside Shell and Tube Heat Exchanger[J].International Communications in Heat&Mass Transfer,2012, 39(9):1416-1424
    [13] Longeon M, Soupart A, FourmiguéJ F, et al. Experimen-tal and Numerical Study of Annular PCM Storage in the Presence of Natural Convection[J]. Applied Energy, 2013,112(112):175-184
    [14]徐峰,田海川,孙勇,等.同心套管双程流相变蓄热单元蓄放热特性研究[J].流体机械,2013, 41(1):68-72XU Feng, TIAN Haichuan, SUN Yong, et al. Experimental Study on Heat Charge and Discharge of the Phase Change Thermal Energy Storage unit with Bushings Between Double Flow[J]. Fluid Machinery, 2013, 41(1):68-72
    [15] E R G埃克尔特,R M德雷克,徐明德.传热与传质[M].科学出版社,1963Eckert E R G, Drake R M, XU Mingde. Heat and Mass Transfer[M]. Science Press, 1963
    [16]陈小雁.冰片式动态制冰系统传热特性研究[D].南京理工大学,2006CHEN Xiaoyan. Study on the Heat Transfer Characteristics of the ice Sheet Dynamic ice making System[D].Nanjing University of Science and Technology, 2006
    [17] Tay N H S, Belusko M, Bruno F. An Effectiveness-NTU Technique for Characterising Tube-in-tank Phase Change Thermal Energy Storage Systems[J]. Applied Energy,2012, 91(1):309-319
    [18] Belusko M, Tay N H S, Liu M, et al. Effective Tube-intank PCM Thermal Storage for CSP Applications, Part2:Parametric Assessment and Impact of Latent Fraction[J]. Solar Energy, 2016, 139:744-756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700