基于单端暂态电流和差比的柔性直流配电系统断线保护
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Line Breakage Fault Protection Based on Ratio Between Sum and Difference of Single-ended Transient Current for Flexible DC Distribution Systems
  • 作者:贾科 ; 冯涛 ; 赵其娟 ; 王聪博 ; 毕天姝 ; 刘海军
  • 英文作者:JIA Ke;FENG Tao;ZHAO Qijuan;WANG Congbo;BI Tianshu;LIU Haijun;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University);State Key Laboratory of Advanced Power Transmission Technology(Global Energy Interconnection Research Institute);
  • 关键词:断线保护 ; 直流配电系统 ; 故障特性 ; 暂态电流 ; 闭环运行
  • 英文关键词:line breakage fault protection;;DC distribution system;;fault characteristics;;transient current;;closed-loop operation
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:新能源电力系统国家重点实验室(华北电力大学);先进输电技术国家重点实验室(全球能源互联网研究院有限公司);
  • 出版日期:2019-04-25
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.654
  • 基金:国家重点研发计划资助项目(2018YFB0904104);; 国家自然科学基金资助项目(51407067);; 国家电网公司科技项目(5205A0160002)~~
  • 语种:中文;
  • 页:DLXT201908021
  • 页数:12
  • CN:08
  • ISSN:32-1180/TP
  • 分类号:212-223
摘要
直流配电系统单极断线故障特征不明显,现有的单极断线保护依赖单一电气量量测,难以通过定值整定准确可靠地识别故障线路。文中提出一种基于单端正负极电流和差比的新型断线保护。通过分析四端直流配电系统开环与闭环运行模式下单极断线的故障机理,得出单极断线故障下故障极与非故障极线路电流的变化差异,进一步利用两者线路电流的和与差作商放大故障极与非故障极的差异,达到可靠识别故障极线路的目的。所提保护原理简单,计算量小,避免了定值无法整定的问题,基于本地测量信息即可实现快速故障识别与选极。最后,通过仿真验证了该方法的可靠性。
        The characteristics of line breakage fault in DC distribution system are not distinctive compared with normal operation. The existing line breakage protections which rely on the single-terminal electrical quantity is difficult to identify the faulty line accurately and reliably. This paper proposes a novel protection method for line breakage fault based on ratios between sum and difference of single-ended positive and negative currents. By analyzing the characteristics of line breakage fault in open-loop and closed-loop operation modes of a four-terminal DC distribution system, the differences of line currents between fault pole and non-fault pole can be obtained when line breakage fault occurs. The differences between fault pole and non-fault pole are amplified by the ratios between sum and difference of the line currents to identify the fault pole reliably. The proposed protection principle is simple, straightforward and can avoid the setting calculation problem. In addition, fault identification and pole selection can be achieved quickly based on local measurement information. Finally, the reliability of the proposed method is verified by simulation results.
引文
[1] RODRIGUEZ-DIAZ E, SAVAGHEBI M, VASQUEZ J C. An overview of low voltage DC distribution systems for residential applications[C]// 2015 IEEE 5th International Conference on Consumer Electronics, September 6-9, 2015, Berlin, Germany: 318-322.
    [2] 李扬,韦钢,马钰,等.含电动汽车和分布式电源的主动配电网动态重构[J].电力系统自动化,2018,42(5):102-110.DOI:10.7500/AEPS20170926006.LI Yang, WEI Gang, MA Yu, et al. Dynamic reconfiguration of active distribution network considering electric vehicles and distributed generations[J]. Automation of Electric Power Systems, 2018, 42(5): 102-110. DOI: 10.7500/AEPS20170926006.
    [3] 江道灼,郑欢.直流配电网研究现状与展望[J].电力系统自动化,2012,36(8):98-104.JIANG Daozhuo, ZHENG Huan. Research status and developing prospect of DC distribution network[J]. Automation of Electric Power Systems, 2012, 36(8): 98-104.
    [4] 丁明,史盛亮,潘浩,等.含电动汽车充电负荷的交直流混合微电网规划[J].电力系统自动化,2018,42(1):32-38.DOI:10.7500/AEPS20170527003.DING Ming, SHI Shengliang, PAN Hao, et al. Planning of AC/DC hybrid microgrid with electric vehicles charging load integration[J]. Automation of Electric Power Systems, 2018, 42(1): 32-38. DOI: 10.7500/AEPS20170527003.
    [5] 薛士敏,陈超超,金毅,等.直流配电系统保护技术研究综述[J].中国电机工程学报,2014,34(19):3114-3122.XUE Shimin, CHEN Chaochao, JIN Yi, et al. A research review of protection technology for DC distribution system[J]. Proceedings of the CSEE, 2014, 34(19): 3114-3122.
    [6] 王丹,毛承雄,陆继明,等.直流配电系统技术分析及设计构想[J].电力系统自动化,2013,37(8):82-88.WANG Dan, MAO Chengxiong, LU Jiming, et al. Technical analysis and design concept of DC distribution system[J]. Automation of Electric Power Systems, 2013, 37(8): 82-88.
    [7] WU Z, JIANG D, LAO D, et al. A novel topology of DC distribution network with fault current limiting static synchronous series compensator[C]// 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, September 26-29, 2017, Torino, Italy: 1-5.
    [8] HAKALA T, L?HDEAHO T, J?RVENTAUSTA P. Low-voltage DC distribution utilization potential in a large distribution network company[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 1694-1701.
    [9] 毕天姝,李猛,贾科,等.直流配电网保护技术评述[J].南方电网技术,2016,40(3):53-57.BI Tianshu, LI Meng, JIA Ke, et al. Review of DC distribution network protection technology[J]. Southern Power System Technology, 2016, 40(3): 53-57.
    [10] FLETCHER S D A, NORMAN P J, FONG K, et al. High-speed differential protection for smart DC distribution systems[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2610-2617.
    [11] LI M, JIA K, BI T S, et al. Sixth harmonic-based fault location for VSC-DC distribution systems[J]. IET Generation, Transmission & Distribution, 2017, 11(14): 3485-3490.
    [12] 贾科,李猛,毕天姝,等.柔性直流配电线路能量分布差动保护[J].电网技术,2017,41(9):3058-3065.JIA Ke, LI Meng, BI Tianshu, et al. Energy distribution-based differential protection for VSC-DC distribution lines[J]. Power System Technology, 2017, 41(9): 3058-3065.
    [13] 周家培,赵成勇,李承昱,等.基于直流电抗器电压的多端柔性直流电网边界保护方案[J].电力系统自动化,2017,41(19):89-94.DOI:10.7500/AEPS20170331005.ZHOU Jiapei, ZHAO Chengyong, LI Chengyu, et al. Boundary protection scheme for multi-terminal flexible DC grid based on voltage of DC reactor[J]. Automation of Electric Power Systems, 2017, 41(19): 89-94. DOI: 10.7500/AEPS20170331005.
    [14] FENG X, LI Q, PAN J, et al. A novel fault location method and algorithm for DC distribution protection[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 1834-1840.
    [15] YANG J, FLETCHER J E, O’REILLY J. Short-circuit and ground fault analyses and location in VSC-based DC network cables[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3827-3837.
    [16] 毕天姝,王帅,贾科,等.基于短时能量的多端柔性直流单极接地故障线路识别方法[J].电网技术,2016,40(3):689-695.BI Tianshu, WANG Shuai, JIA Ke, et al. Short-term energy based approach for monopolar grounding line identification in MMC-MTDC system[J]. Power System Technology, 2016, 40(3): 689-695.
    [17] 行登江,吴金龙,王先为,等.MMC-HVDC系统直流断线故障特性分析[J].电网技术,2015,39(7):1825-1832.XING Dengjiang, WU Jinlong, WANG Xianwei, et al. Analysis on characteristic of DC transmission line breakage fault in modular multilevel converter based HVDC transmission system[J]. Power System Technology, 2015, 39(7): 1825-1832.
    [18] 仉雪娜,赵成勇,庞辉,等.基于MMC的多端直流输电系统直流侧故障控制保护策略[J].电力系统自动化,2013,37(15):140-145.ZHANG Xuena, ZHAO Chengyong, PANG Hui, et al. A control and protection scheme of multi-terminal DC transmission system based on MMC for DC line fault[J]. Automation of Electric Power Systems, 2013, 37(15): 140-145.
    [19] EMHEMED A A S, BURT G M. An advanced protection scheme for enabling an LVDC last mile distribution network[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2602-2609.
    [20] MONADI M, KOCH-CIOBOTARU C, LUNA A, et al. Multi-terminal medium voltage DC grids fault location and isolation[J]. IET Generation, Transmission & Distribution, 2016, 10(14): 3517-3528.
    [21] 宁连营,邰能灵,郑晓冬,等.基于单端暂态电流的MMC-HVDC输电线路保护方案研究[J].中国电机工程学报,2017,37(17):5010-5017.NING Lianying, TAI Nengling, ZHENG Xiaodong, et al. Research on MMC-HVDC transmission line protection scheme based on one terminal transient current[J]. Proceedings of the CSEE, 2017, 37(17): 5010-5017.
    [22] 杨海倩,王玮,荆龙,等.MMC-HVDC系统直流侧故障暂态特性分析[J].电网技术,2016,40(1):40-46.YANG Haiqian, WANG Wei, JING Long, et al. Analysis on transient characteristic of DC transmission line fault in MMC based HVDC transmission system[J]. Power System Technology, 2016, 40(1): 40-46.
    [23] 徐政.柔性直流输电系统[M].北京:机械工业出版社,2016.XU Zheng. Flexible DC transmission system[M]. Beijing: Machinery Industry Press, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700