非金属元素掺杂锐钛矿TiO_2(101)表面对提升NH_3光学气敏传感特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The influence of the non-metallic elements doped on the anatase TiO_2(101) surface on the improvement of NH_3 molecule optical gas sensing properties of the material
  • 作者:周清斌 ; 冯庆 ; 周康 ; 田芸 ; 刘鹏
  • 英文作者:ZHOU Qing-Bin;FENG Qing;ZHOU Kang;TIAN Yun;LIU Peng;Chongqing Key Lab. on Optoelectronic Functional Materials;Key Lab. of Optics and Engineering, Chongqing Normal University;
  • 关键词:光学性质 ; 第一性原理 ; 锐钛矿TiO_2(101) ; NH_3分子 ; 表面掺杂
  • 英文关键词:Optical properties;;The First-Principles;;Anatase TiO_2(101);;NH_3 molecule;;surface doping
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:重庆市光电功能材料重点实验室;重庆师范大学光学工程重点实验室;
  • 出版日期:2018-10-22 09:36
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(61274128);; 重庆市自然科学基金(2014jcyjA50015)
  • 语种:中文;
  • 页:YZYF201901024
  • 页数:9
  • CN:01
  • ISSN:51-1199/O4
  • 分类号:148-156
摘要
本文采用第一性原理平面波超软赝势的方法,模拟计算了含氧空位锐钛矿TiO_2(101)表面单掺杂非金属C元素、N元素、F元素以及双掺杂C-N元素、C-F元素、N-F元素后表面的氧化还原能力,分析对NH_3分子吸附的微观机理,研究杂质掺入对光学传感特性的影响.结果表明:非金属元素是比较容易掺入到锐钛矿TiO_2(101)表面,掺杂表面对NH_3分子吸附较未掺杂的表面要好,表面吸附NH_3分子后,吸附距离都出现缩短,C-N元素掺杂后吸附距离最小且吸附能最大;通过Mulliken电荷布居分布分析,C掺杂提升了表面的氧化性,N元素对表面的氧化性提升不明显,而F掺杂降低了表面的氧化性;通过态密度分析可知,C掺杂在禁带中产生了受主能级,而N掺杂提高了价带顶的电子态密度,F掺杂在导带底产生了施主能级;通过光学性质的分析可知:C掺杂提升了材料对低能可见光的响应,使材料对570 nm~760 nm范围内的可见光吸收提高了大约3.5倍;而C-N双掺杂体系,使材料对400 nm~570 nm范围内的可见光吸收提高了大约3倍.总的来说,单掺杂C元素以及双掺杂C-N元素都能明显的提高材料的光学气敏传感特性.
        The oxidation-reduction capability of anatase TiO_2(101)surface containing oxygen vacancy simulated by a single doped nonmetal C element, N element, F element and double doped C-N element, C-F element and N-F element,which were calculated by the first-principles ultra-soft pseudo-potential plane wave approach, analyzed the microcosmic mechanism of NH_3 adsorption, and investigated the influence of impurity elements doped to the optical sensing properties. The results show that: non-metallic elements can be mixed into anatase TiO_2(101) surface easily, the doping surface's adsorption capacity on NH_3 molecule is better than the undoped surface, the adsorption distance is shortened after adsorbing the NH_3 molecule, after doping C-N element the adsorption distance is the smallest while the adsorption energy is the largest. After the analysis of the distribution of Mulliken charge, the doping of C element improves the oxidation of the surface, while the oxidation of N-elements on the surface is not obvious. On the countrary, F-doping element reduces the oxidation of the surface. Through the state density analysis, it is known that C doping element in the band gap produces the acceptor energy level, and N doping element enhances the electron state density of the valence band top, The F doping element produces the donor energy level at the bottom of the guide band; the optical properties of the C-doped material can increase the response of the materials to the low energy visible light, and the visible response of the material to the 570 nm~760 nm range is about 3.5 times; While the C-N double doping system makes the visible response of the material to 400 nm~570 nm is about 3 times. In general, the single doped C element and the double doped C-N element can improve the optical gas sensing properties of the material obviously.
引文
[1] Zhu H Q, Feng Q. A. study on microscopic mechanism and optical gas sensing material characteristics of rutile titanium dioxide (110) surface adsorption NH3 molecules[J]. Acta Opt. Sin., 2014, 34: 221 (in Chinese) [朱洪强, 冯庆. 金红石相TiO2(110)面对NH3吸附的微观机制和光学气敏特性研究[J]. 光学学报, 2014, 34: 221]
    [2] Qiang R U, Shejun H U, Qiu X. Electronic structure and elastic constants of anatase-TiO2 by first principles calculation [J]. J. South China Normal Univ.: Nat. Sci. Ed., 2009, 1: 52 (in Chinese) [汝强, 胡社军, 邱秀丽. 第一性原理计算锐钛矿型TiO2电子结构及力学性能分析[J]. 华南师范大学学报:自然科学版, 2009, 1: 52]
    [3] Byrne J A, Eggins B R, Brown N, et al. Immobilisation of TiO2, powder for the treatment of polluted water[J]. Appl. Catal. B: Environ., 1998, 17: 25.
    [4] Campbell C T, Grant A W, Starr D E, et al. Model oxide-supported metal catalysts: Energetics, particle thicknesses, chemisorptionand catalytic properties[J]. Top Catal., 2001, 14: 43.
    [5] Diebold U. The surface science of titanium dioxide[J]. Surf. Sci. Rep., 2003, 48: 53.
    [6] He Y B, Tilocca A, Dulub O, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)[J]. Nat. Mater., 2009, 24: 585.
    [7] Chen X Y, Yue Y X, Feng Q. The influence of NH3 adsorption anatase TiO2(101) surface doped nonmetal atom properties[J]. J. At. Mol. Phys., 2017, 34: 786 (in Chinese) [陈小雨, 岳远霞, 冯庆. 表面非金属掺杂对锐钛矿相TiO2(101)面吸附NH3特性的影响[J]. 原子与分子物理学报, 2017, 34: 786]
    [8] Zhou K, Feng Q, Tian Y, et al. Influences of oxygen vacancies in MgO,SnO2 and TiO2 surfaces on the optical sensing characteristics[J]. J. At. Mol. Phys., 2017, 34: 856 (in Chinese) [周康, 冯庆, 田芸, 等. MgO、SnO2、TiO2表面氧空位性质对气体光学传感特性的影响[J]. 原子与分子物理学报, 2017, 34: 856]
    [9] Cheng L, Zhao X Z, Gan Z H. First principle calculations of the electronic structure and optical properties of(Co,N) Co-doped anatase[J]. J. At. Mol. Phys., 2012,: 29: 746 (in Chinese) [程亮, 赵兴中, 甘章华. Co,N共掺杂锐钛矿相TiO2电子结构和光学性质的第一性原理研究[J]. 原子与分子物理学报, 2012, 29: 746]
    [10] Peng L P, Xia Z C, Yang C Q. First-principles calculation of matal and nonmetal codoped anantase TiO2. [J]. Acta Phys. Sin., 2012,61: 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2 的第一性原理计算[J]. 物理学报2012, 61: 127104]
    [11] Wanbayor R, Ruangpornvisuti V. A periodic DFT study on binding of Pd , Pt and Au on the anatase TiO2 (001) surface and adsorption of CO on the TiO2 surface-supported Pd, Pt and Au[J]. Appl. Surf. Sci., 2012, 258: 3298.
    [12] Hebenstreit W, Ruzycki N, Herman G S, et al. Scanning tunneling microscopy investigation of the TiO2, anatase (101) surface[J]. Phys. Rev. B, 2000, 62: L239.
    [13] Yue Y X, Feng Q, Yin W. Defect formation energy and electronic properties of anatase TiO2 doped with C,N,F[J]. J. Funct. Mater., 2013, 44: 1879 (in Chinese) [岳远霞, 冯庆, 王寅. 非金属元素C、N、F掺杂锐钛矿型TiO2的缺陷形成能和电子性质[J]. 功能材料, 2013, 44: 1879]
    [14] Xu P C, Liu Y, Wei J H, et al. Solvothermal Preparation of Ag/TiO2 Nanoparticles and Their Photocatalytic Activity[J]. Acta Phys.-Chim. Sin., 2010, 26: 2261. (in Chinese) [许平昌, 柳阳, 魏建红,等. 溶剂热法制备Ag/TiO2纳米材料及其光催化性能[J].物理化学学报, 2010, 26: 2261]
    [15] Xu L, Tang C Q, Huang Z B. Light absorption properties of V doped anatase TiO2 [J]. Acta Phys.-Chim. Sin., 2010, 26: 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌. V 掺杂锐钛矿相TiO2 的光吸收特性[J]. 物理化学学报, 2010, 26: 1401]
    [16] Zang X Y, Cui X L. Preparation and photocatalytic hydrogen evolution performance of C-N Co-doped nano TiO2 photocatalysts [J].Acta Phys.-Chim. Sin., 2009, 25: 1829 (in Chinese)[张晓艳, 崔晓莉. C-N 共掺杂纳米TiO2 的制备及其光催化制氢活性[J]. 物理化学学报, 2009, 25: 1829]
    [17] Jia L C, Wu C. C, Li Y Y, et al. Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping[J]. Appl. Phys. Lett., 2011, 98: 211903.
    [18] Zhao Z Y, Liu Q J, Zhang J, et al. First-principles study of 3d transition metal-doped anatase3d[J]. Acta Phys. Sin., 2007, 56: 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 等. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究[J]. 物理学报, 2007, 56: 6592]
    [19] Zhang R S, Liu Y, Gao Q, et al. First-principles study on the electronic and optical properties of F- and Nb-doped anatase TiO2[J]. J. Alloy. Comp., 2011, 509: 9178.
    [20] Xu L, Tang C Q, Dai L, et al. First-principles study of the electronic structure of N-doping anatase TiO2[J]. Acta Phys. Sin., 2007, 56: 1048.
    [21] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condens. Matt., 2002, 14: 2717.
    [22] Nilsing M, Lunell S, Persson P, et al. Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations[J]. Surf. Sci., 2005, 582: 49.
    [23] Liu B,Gu M, Liu X L, et al. First- principles stud y of fluorine-doped zinc oxide[J]. Appl. Phys. Lett., 2010, 97: 122101.
    [24] Han Y, Liu C J, Ge Q. Interaction of Pt clusters with the anatase TiO(2)(101) surface: a first principles study[J]. J. Phys. Chem. B, 2006, 110: 7463.
    [25] Shen X C. Semiconductor spectrum and optical properties [M]. 2nd edition. Beijing:Science Press, 1992 (in Chinese) [沈学础. 半导体光谱与光学性质 [M]. 二版. 北京:科学出版社, 1992]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700