近地卫星GPS接收机降级应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degraded Application to LEO Satellite GPS Receiver
  • 作者:李强 ; 李会锋 ; 高阳 ; 王洪浩
  • 英文作者:LI Qiang;LI Huifeng;GAO Yang;WANG Honghao;
  • 关键词:近地卫星 ; GPS接收机 ; 应答机 ; 空间环境 ; SEL ; 降级应用
  • 英文关键词:LEO Satellite;;GPS Receiver;;Transponder;;Space Environment;;SEL;;Degraded Application
  • 中文刊名:XDDH
  • 英文刊名:Modern Navigation
  • 机构:航天器在轨故障诊断与维修重点实验室;西安卫星测控中心;
  • 出版日期:2018-12-15
  • 出版单位:现代导航
  • 年:2018
  • 期:v.9
  • 语种:中文;
  • 页:XDDH201806002
  • 页数:8
  • CN:06
  • ISSN:61-1478/TN
  • 分类号:5-12
摘要
针对GPS接收机发生SEL事件后的温度升高问题,在卫星轨道漂移分析基础上,重点考察卫星应答机的AGC电压与载波锁定的温度敏感特性,并确定载波锁定的温度上限,进而提出GPS接收机的降级应用方案,关闭轨道电路板。结果表明,应答机载波锁定时的AGC电压应在0.82V以下,对应卫星应答机温度不超过26.2°C;轨道电路板断电后,GPS接收机定位与守时功能正常,工作温度在20.5°C以下,发生SEL事件的概率降低;GPS接收机温度对于卫星应答机的影响明显减弱,应答机在原有上行约束下的载波锁定时长优于150s,满足上行遥控注入时限需求。降级应用方案已施行于大数量卫星集中监控与管理。
        With respect to SEL(Single Event Latch-up) found in GPS(Global Positioning System) receiver of LEO(Low Earth Orbit) satellite, temperature influence after SEL has presented. Details on orbital element shifting are discussed. Satellite transponder is investigated to be thermally sensitized by analyzing AGC(Auto Gain Control) variation and carrier locking characteristic. When transponder AGC is less than 0.82 V, carrier signal acquisition is reliable with transponder working temperature lower than 26.2°C. Degraded application to GPS receiver is carried out to turn off orbital PCB(Printed Circuit Board). The results imply that, after the orbital PCB shutdown, GPS receiver works with normal positioning data and TIC(Time In Continuity) data and temperature below 20.5°C, and has a low probability of SEL with mitigation of temperature influence, and satellite transponder is still applicable to obtain carrier signal acquisition time more than 150 s and is able to fulfill the requirements of telecomm and in the uplink. The Degradation has used in long-term management for lots of satellites on-orbit in TT&C(Telemetry, Tracking and Command).
引文
[1]ZHU Xuefen,CHEN Xiyuan,CHEN Jianfeng.Influence of strong ionospheric scintillation on GPS software receiver[J].Journal of Chinese Inertial Technology,2016,24(4):480-484.
    [2]魏可友,刘成,姜泉江,等.星载GPS接收机射频前端设计与实现[J].信息技术,2016,(6):7-10,13.
    [3]夏俊,岳富占,董启甲,等.基于So C的星载微型GNSS接收机设计[J].电子设计工程,2015,23(23):110-112,115.
    [4]赵晶.基于ZYNQ-7000的星载双模卫星导航接收机设计与实现[J].通信技术,2017,50(8):1849-1854.
    [5]Thomas Junique,David Pascal,Pierre-Yves Guidotti,et al.G-SPHERE-S:First GPS/Galileo in-orbit GNSS receiver for orbit determination of MICROSCOPE satellite[C].SpaceOps 2018 Conference,Marseille,France,2018,AIAA 2018-2625:1-12.
    [6]朱淑珍,谢卓辰,姜泉江,等.星载GPS接收机的可见星预测方法[J].电子设计工程,2015,23(16):1-4.
    [7]朱淑珍,夏运兵,王龙,等.基于动力学轨道外推的星载辅助GPS快速搜索方法[J].遥测遥控,2016,37(1):21-26,37.
    [8]肖寅,姜兴龙,龚文斌,等.基亏GPS/GLONASS星座卫星的星间GDOP最小值分析[J].电子设计工程,2016,24(2):21-24.
    [9]苏星,王慧泉,金仲和.基于GPS校准的皮卫星高精度时间系统方案[J].传感技术学报,2016,29(8):1200-1204.
    [10]Saptarshi Bandyopadhyay,Giri P Subramaniany,Rebecca Foust,et al.A Review of Impending Small Satellite Formation Flying Missions[C].53rd AIAA Aerospace Sciences Meeting,Kissimmee,Florida,2015,AIAA2015-1623:1-17.
    [11]Michelangelo Ambrosini.The Key Role and Advantages of GNSS Precise Relative Positioning in Spacecraft Formation Flying Mission Design,Analysis and Operations[C].Space Ops 2018 Conference,Marseille,France,2018,AIAA 2018-2569:1-17.
    [12]张伟,杜耀珂,李东俊,等.基于星间测距增强的卫星编队GPS相对导航研究[J].上海航天,2017,34(3):95-101.
    [13]王文妍,杨盛庆,吴敬玉,等.GPS实时定轨误差对姿态确定的影响分析[J].上海航天,2017,34(1):144-149.
    [14]Randy Rose,Scott Gleason,Christopher Ruf.NASACYGNSS Mission Update;A Pathfinder for Operational GNSS Scatterometry Remote Sensing Applications[C].31st Annual AIAA/USU Conference on Small Satellites,Logan,Utah,2017,SSC17-I-04:1-10.
    [15]James Spann,Charles Swenson,Otavio Durao,et al.The Scintillation Prediction Observations Research Task(SPORT):An International Science Mission using a CubeSat[C].31st Annual AIAA/USU Conference on Small Satellites,Logan,Utah,2017,SSC17-XIII-05:1-12.
    [16]Rebecca Bishop,James Clemmons,Arah Barjatya,et al.The Low-Latitude Ionosphere/Thermaosphere Enhancements in Density(LLITED)Mission[C].31st Annual AIAA/USU Conference on Small Satellites,Logan,Utah,2017,SSC17-XIII-03:1-8.
    [17]Charlie Amin,Bruno Sousa,Maite Arza,at al.Cluster Multiple Spacecraft Per Aperture Operations[C].Space Ops 2016 Conference,Daejeon,Korea,2016,AIAA2016-2639:1-13.
    [18]郝培杰,徐冰霖,卢晓东,等.卫星单粒子闩锁异常的诊断与自动报警[J].飞行器测控学报,2014,33(6):512-517.
    [19]陈睿,余永涛,董刚,等.不同工艺尺寸CMOS器件单粒子闩锁效应及其防护方法[J].强激光与粒子束,2014,26(7):264-269.
    [20]秦军瑞,陈书明,陈建军,等.180nm CMOS工艺下SEL敏感性关键影响因素[J].国防科技大学学报,2011,33(3):72-76.
    [21]蔡震波,吴中祥.实践四号卫星在轨SEL现象与地面模拟试验的对比分析[J].航天器工程,1996,5(3):35-39.
    [22]余永涛,封国强,陈睿,等.SRAM K6R4016V1D单粒子闩锁及防护试验研究[J].原子能科学技术,2012,46(suppl.):587-591.
    [23]张云龙,崔兴柱,龚依民,等.VA140的单粒子闩锁试验研究[J].核电子学与探测技术,2014,34(12):1518-1519,1523.
    [24]李恒,袁飞,程恩.基于门限估计的水声通信接收机自动增益控制[J].解放军理工大学学报(自然科学版),2015,16(3):213-219.
    [25]吴文瑞,黄海.太阳同步轨道卫星热控系统分析及优化[J].航天器工程,2012,21(2):44-49.
    [26]过九镕.两颗通信卫星热控分系统长期在轨性能评述[J].中国空间科学技术,1991,11(5):29-33,64.
    [27]宋馨,张有为,刘自军,等.基于卫星在轨温度预示热控涂层性能退化的方法[J].中国空间科学技术,2015,35(6):40-47,56.
    [28]Steven Isaacs,Diego Arias,Mike Hulse,et al.Enhancing CubeSat and small satellite reliability through improved thermal management[C].30th Annual AIAA/USUConference on Small Satellites,Logan,Utah,2016,poster2-9.
    [29]田英国,郝金明.Swarm卫星天线相位中心校正及其对精密定轨的影响[J].测绘学报,2016,45(12):1406-1412,1433.
    [30]熊超,朱俊,卢传芳.Tianhui-1C卫星数据质量分析及精密定轨[J].大地测量与地球动力学,2017,37(9):951-955.
    [31]Karp J,Hart M,Maillard P,et al.Single-Event Latch-Up:Increased Sensitivity From Planar to FinFET[J].IEEETransactions on Nuclear Science,2018,65(1):217-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700