骨骺损伤后预防骨桥形成的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the prevention of bone bridge formation after epiphyseal injury
  • 作者:邓玲珑 ; 余黎
  • 英文作者:DENG Linglong;YU Li;Dept. of Orthopedics,Zhongnan Hospital of Wuhan University;
  • 关键词:骨骺 ; 骺板 ; 损伤 ; 预防
  • 英文关键词:Epiphysis;;Growth Plate;;Injury;;Prevention
  • 中文刊名:HBYK
  • 英文刊名:Medical Journal of Wuhan University
  • 机构:武汉大学中南医院骨科;
  • 出版日期:2019-01-26 09:49
  • 出版单位:武汉大学学报(医学版)
  • 年:2019
  • 期:v.40
  • 基金:湖北省自然基金面上项目(编号:303220100566);; 教育部留学回国人员科研启动基金(编号:230303)
  • 语种:中文;
  • 页:HBYK201903035
  • 页数:5
  • CN:03
  • ISSN:42-1677/R
  • 分类号:173-177
摘要
骺板是连接骨骺与干骺端的层状软骨。骨骼纵向生长是骺板软骨细胞增殖发育及软骨内骨化的结果。骺板具有生长骨骼的功能,但也是骨骼生长发育过程中最薄弱环节,可因外伤、肿瘤、辐射、细菌感染等造成损伤。骺板损伤后可形成骨桥,引起骨骼生长障碍或紊乱,导致肢体成角和(或)短缩畸形。本文围绕骨骺损伤后骨桥形成的机制及预防骨桥形成的研究进展进行综述。
        Growth plate is the lamellar cartilage that connects the epiphysis with the epiphysis. The longitudinal growth of bone is the result of the growth of epiphyseal chondrocytes and endochondral ossification. The growth plate has the function of bone growth, but it is also the weakest link in the process of bone growth and can be damaged due to trauma, tumor, radiation, and bacterial infection.The bone bridge may be formed after epiphyseal plate damaged, which will cause the bone growth disorder, resulting in limb angulation and/or shortening deformity. This review focuses on the mechanism of bone bridge formation after epiphysis injury and the research progress of the prevention of bone bridge formation.
引文
[1] Nguyen JC, Markhardt BK, Merrow AC, et al. Imag-ing of pediatric growth plate disturbances[J]. Radio-graphics, 2017,37(6):1 791-1 812.
    [2]黄长智,杨效宁.骺板损伤及后遗畸形的诊疗现状[J].创伤外科杂志, 2013,15(2):175-177.Huang CZ, Yang XN. Diagnosis and treatment of epiphyseal plate injuries and deformities[J]. Journal of Traumatic Surgery, 2013,15(2):175-177.
    [3] Macsai CE, Georgiou KR, Foster BK, et al. Microar-ray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony re-pair[J]. Bone,2012,50(5):1 081-1 091.
    [4] Chung R, Cool JC, Scherer MA, et al. Roles of neu-trophil-mediated inflammatory response in the bony re-pair of injured growth plate cartilage in young rats[J]. J Leukoc Biol,2006,80(6):1 272-1 280.
    [5] Xian CJ, Zhou FH, McCarty RC, et al. Intramembra-nous ossification mechanism for bone bridge formation at the growth plate cartilage injury site[J]. J Orthop Res,2004,22(2):417-426.
    [6] Schindeler A, McDonald MM, Bokko P, et al. Bone remodeling during fracture repair:The cellular picture[J]. Semin Cell Dev Biol,2008,19(5):459-466.
    [7] Macsai CE, Hopwood B, Chung R, et al. Structural and molecular analyses of bone bridge formation within the growth plate injury site and cartilage degeneration at the adjacent uninjured area[J]. Bone, 2011, 49(4):904-912.
    [8] Chung R, Xian CJ. Recent research on the growth plate:Mechanisms for growth plate injury repair and po-tential cell-based therapies for regeneration[J]. J Mol Endocrinol,2014,53(1):T45-T61.
    [9] Fischerauer E, Heidari N, Neumayer B, et al. The spatial and temporal expression of VEGF and its recep-tors 1 and 2 in post-traumatic bone bridge formation of the growth plate[J]. J Mol Histol, 2011,42(6):513-522.
    [10] Su YW, Chung R, Ruan CS, et al. Neurotrophin-3 in-duces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats[J]. J Bone Miner Res, 2016,31(6):1 258-1 274.
    [11] Chung R, Foster BK, Xian CJ. The potential role of VEGF-induced vascularisation in the bony repair of in-jured growth plate cartilage[J]. J Endocrinol,2014,221(1):63-75.
    [12] Xu B, Zhang J, Brewer E, et al. Osterix enhances BM-SC-associated osseointegration of implants[J]. J Dent Res,2009,88(11):1 003-1 007.
    [13] Chung R, Foster BK, Xian CJ. Inhibition of protein ki-nase-D promotes cartilage repair at injured growth plate in rats[J]. Injury,2013,44(7):914-922.
    [14] Chung R, Wong D, Macsai C, et al. Roles of Wnt/be-ta-catenin signalling pathway in the bony repair of in-jured growth plate cartilage in young rats[J]. Bone,2013,52(2):651-658.
    [15] Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes[J]. Dev Cell, 2005, 8(5):727-738.
    [16] Brown JH, Deluca SA. Growth plate injuries:Salter-Harris classification[J]. Am Fam Physician, 1992, 46(4):1 180-1 184.
    [17]张克勇,余国荣,余黎,等.切除骨桥并填塞带血供脂肪筋膜瓣治疗中心型骨桥形成的研究[J].中华实验外科杂志,2013,30(11):2 364-2 366.Zhang KY, Yu GR, Yu L, et al. Treatment of bone bridge and filling of vascularized fat-fascia flap[J]. Chi-nese Journal of Experimental Surgery, 2013, 30(11):2 364-2 366.
    [18] Cady RB, Spadaro JA, Fitzgerald JA, et al. The ef-fects of fat interposition for central-physeal defects. A histologic study in rabbits[J]. Clin Orthop Relat Res,1992,(282):304-309.
    [19] Lee SU, Lee JY, Joo SY, et al. Transplantation of a scaffold-free cartilage tissue analogue for the treatment of physeal cartilage injury of the proximal tibia in rabbits[J]. Yonsei Med J, 2016,57(2):441-448.
    [20] Tomaszewski R, Wiktor L, Gap A. Orthotopic autolo-gous chondrocyte grafting as a method of treatment of growth plate damage in rabbits[J]. Ortop Traumatol Re-habil, 2016,18(5):485-496.
    [21] Hansen AL, Foster BK, Gibson GJ, et al. Growth-plate chondrocyte cultures for reimplantation into growth-plate defects in sheep. Characterization of cultures[J].Clin Orthop Relat Res, 1990,(256):286-298.
    [22] Shukrimi AB, Afizah MH, Schmitt JF, et al. Mesen-chymal stem cell therapy for injured growth plate[J].Front Biosci(Schol Ed), 2013,5:774-785.
    [23] Yoshida K, Higuchi C, Nakura A, et al. Treatment of partial growth arrest using an in vitro-generated scaffold-free tissue-engineered construct derived from rabbit sy-novial mesenchymal stem cells[J]. J Pediatr Orthop,2012,32(3):314-321.
    [24] Azarpira MR, Shahcheraghi GH, Ayatollahi M, et al.Tissue engineering strategy using mesenchymal stem cell-based chitosan scafolds in growth plate surgery:a preliminary study in rabbits[J]. Orthop Traumatol Surg Res, 2015,101(5):601-605.
    [25] Planka L, Srnec R, Rauser P, et al. Nanotechnology and mesenchymal stem cells with chondrocytes in pre-vention of partial growth plate arrest in pigs[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2012,156(2):128-134.
    [26] Asen AK, Goebel L, Rey-Rico A, et al. Sustained spatiotemporal release of TGF-beta1 confers enhanced very early chondrogenic differentiation during osteo-chondral repair in specific topographic patterns[J].Faseb J, 2018,32(10):5 298-5 311.
    [27] Clark A, Hilt JZ, Milbrandt TA, et al. Treating proxi-mal tibial growth plate injuries using poly(lactic-co-gly-colic acid)scaffolds[J]. Biores Open Access,2015,4(1):65-74.
    [28] Fischer J, Knoch N, Sims T, et al. Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis[J]. J Cell Physiol, 2018,233(11):8 962-8 970.
    [29] Deponti D, Di Giancamillo A, Gervaso F, et al. Colla-gen scaffold for cartilage tissue engineering:the benefit of fibrin glue and the proper culture time in an infant car-tilage model[J]. Tissue Eng Part A,2014,20(5-6):1 113-1 126.
    [30]孙凯,彭昊,刘洋,等.软骨组织损伤修复的组织工程学研究进展[J].骨科,2017,8(1):76-80.Sun K, Peng H, Liu Y, et al. Advances in tissue engi-neering of cartilage injury repair[J]. Orthopedics, 2017,8(1):76-80.
    [31] Chung R, Foster BK, Xian CJ. Injury responses and repair mechanisms of the injured growth plate[J]. Front Biosci(Schol Ed), 2011,3:117-125.
    [32] Hu C, Wu Y, Wan Y, et al. Introduction of hIGF-1gene into bone marrow stromal cells and its effects on the cell′s biological behaviors[J]. Cell Transplant,2008,17(9):1 067-1 081.
    [33] Sundararaj SK, Cieply RD, Gupta G, et al. Treatment of growth plate injury using IGF-I-loaded PLGA scaf-folds[J]. J Tissue Eng Regen Med, 2015,9(12):E202-E209.
    [34] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-de-rived factor 1/CXCR4 signaling is critical for the recruit-ment of mesenchymal stem cells to the fracture site dur-ing skeletal repair in a mouse model[J]. Arthritis Rheum, 2009,60(3):813-823.
    [35] Nagao M, Hamilton JL, Kc R, et al. Vascular endo-thelial growth factor in cartilage development and osteo-arthritis[J]. Sci Rep, 2017,7(1):13 027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700