吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Overview and Development Analysis of Air-Breathing Hypersonic Airframe/Propulsion Integrative Design Technology
  • 作者:向先宏 ; 钱战森
  • 英文作者:XIANG Xian-hong;QIAN Zhan-sen;AVIC Aerodynamics Research Institute;Aeronautical Science and Technology Key Laboratory for High Speed High Reynolds Number Aerodynamic Research;
  • 关键词:吸气式 ; 高超声速飞机 ; 单/双级入轨 ; 机体/推进一体化设计 ; 研究进展
  • 英文关键词:Air-breathing;;Hypersonic aircraft;;SSTO/TSTO;;Airframe/propulsion integrative design;;Research progress
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国航空工业空气动力研究院;高速高雷诺数气动力航空科技重点实验室;
  • 出版日期:2018-09-20 10:55
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.256
  • 基金:航空科学基金(2014ZA27010)
  • 语种:中文;
  • 页:TJJS201810006
  • 页数:12
  • CN:10
  • ISSN:11-1813/V
  • 分类号:53-64
摘要
为了探索吸气式高超声速飞行器机体/推进一体化设计技术新理念,按照高超声速飞机和SSTO/TSTO分类对其一体化设计技术主要研究进展进行了对比分析,结果表明:高超声速弹用一体化设计技术采用将进气道直接作为前体的方案较多;高超声速飞机一体化设计技术需重点兼顾宽速域整体气动性能;SSTO/TSTO一体化设计技术则由于火箭发动机的引入在一定程度上改善了其对一体化设计的具体需求;同时,近年来高超声速内/外流"弱干涉"和"无干涉"等新型一体化设计技术已逐渐成为一个重要发展方向。对背负式进气的内/外流"无干涉"一体化和常规腹部进气的前体预压缩内/外流"强干涉"一体化方案开展初步对比,研究表明"无干涉"一体化方案升阻比等气动性能更优,同时整体气动特性对飞行条件变化不敏感,具有更好的宽速域适应性,值得进行深入研究。
        For exploring new ideas of air-breathing hypersonic airframe/propulsion integrative design methods("hypersonic integrative design"for short),the schemes are classified and discussed under comparing the vehicles with different missions such as hypersonic aircraft and Single/Two Stage To Orbit vehicles("SSTO/TSTO"for short). Analysis results show that the hypersonic integrative design methods of missile are mostly focused on putting inlet as forebody directly,while that of hypersonic aircraft consider mainly the total aerodynamic performances of wide-speed range,in contrast to less requirement of that of SSTO/TSTO by using rocket engine as combined propulsion system. Besides,the integrative methods based on"weak-interference"or"non-interference"between the in/external flow characteristics of hypersonic vehicles have became one of the most important development tendency. Moreover,preliminary research results of"non-interference"dorsal typed and"stronginterference"ventral typed integrative configurations indicate that lift-to-drag ratio and other related aerodynamic performances of the former is better,as well as owing a more stable and wide adaptable aerodynamic characteristics under the off-design flight conditions,and which are worthy to be studied further in the future.
引文
[1] Lewis M A. Hypersonic Propulsion Airframe Integration Overview[R]. AIAA 2003-4405.
    [2] Blankson I. Air-Breathing Hypersonic Cruise:Prospects for Mach 4-7 Waverider Aircraft[J]. Journal of Engineering for Gas Turbines and Power,1994,116(1):104-115.
    [3]姜宗林.关于吸气式高超声速推进技术研究的思考[J].力学进展,2009,39(4):398-405.
    [4]尤延铖,梁德旺,郭荣伟,等.高超声速三维内收缩式进气道/乘波前体一体化设计评述[J].力学进展,2009,39(5):513-525.
    [5] You Y C,Zhu C X,Guo J L. Dual Waverider Concept for the Integration of Hypersonic Inward-Turning Inlet and Airframe Forebody[R]. AIAA 2009-7421.
    [6]向先宏,钱战森.高超声速飞行器机体/推进气动布局一体化设计技术研究现状[J].航空科学技术,2015,26(10):44-52.
    [7] Sobieczky H,Anderson J D. Hypersonic Waverider Design from Given Shock Waves[C]. Maryland:Proceedings of the First International Hypersonic Waverider Symposium,1990.
    [8] Van W D,Molder S. Applications of Busemann Inlet Designs for Flight at Hypersonic Speeds[R]. AIAA 92-1210.
    [9]文科,李旭昌,马岑睿,等.国外高超声速组合推进技术概述[J].航天制造技术,2011,2(1):4-7.
    [10]沈剑,王伟.国外高超声速研制计划[J].飞航导弹,2006,(8):1-9.
    [11]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态[J].飞航导弹,2004,(5):27-31.
    [12] Joseph M H,James S M,Richard C M. The X-51A Scramjet Engine Flight Demonstration Program[R]. AIAA2008-2540.
    [13]向先宏,王成鹏,程克明.基于类咽式进气道的高超声速飞行器一体化设计[J].宇航学报,2012,33(1):19-26.
    [14] Li Y Q,You Y C. An Innovative Integration Concept for Forebody and Two-Dimensional Hypersonic Inlet with Controllable Wall Pressure Distribution[R]. AIAA2015-3592.
    [15]贺旭照,乐嘉陵.曲外锥乘波体进气道实用构型设计和性能分析[C].杭州:第十八届全国高超声速气动力热学术交流会议,2016:345-353.
    [16] Kothari A P. Designs of Methodology for Inward and Outward,and Partially Inward or Outward Turning Flow Hypersonic Air-Breathing and Rocket-Based-Combined Cycle Vehicles[P]. US:5205505,1998.
    [17] Langener T,Steelant J,Roncioni P. Preliminary Performance Analysis of the LAPCAT-MR2 by Means of Nose-to-Tail Computations[R]. AIAA 2012-5872.
    [18] Paul L M,Vincent L R,Luat T N,et al. NASA Hypersonic Fight Demonstrators-Overview,Status,and Future Plans[J]. Acta Astronautica,2004,(55):619-630.
    [19] John C. Weapons Goes Hypersonic[J]. Aerospace America,2004,(3):38-42.
    [20] Ingenito A,Stefano G,Bruno C. Sizing of TBCC Hypersonic Air-Breathing Vehicles[R]. AIAA 2009-5186.
    [21] Randall T V,Lawrence D H,Charles R M. X-43A Hypersonic Vehicle Technology Development[J]. Acta Astronautica,2006,(59):181-191.
    [22] Moses P L. X-43C Plans and Status[R]. AIAA 2003-7084.
    [23] George T,Richard J,Salvatore L. Air Vehicle Integration and Technology Research(AVIATR)[R]. AFRLRB-WP-TR-2010-3068.
    [24] Unmeel M. Hypersonic Technologies and Aerospace Plane[J]. Aerospace America,2008,(12):110-111.
    [25] Steven W,Ming T,Sue M. Falcon HTV-3X-A Reusable Hypersonic Test Bed[R]. AIAA 2008-2544.
    [26] Elvin J D. Integrated Inward Turning Inlets and Nozzles for Hypersonic Air Vehicles[P]. US:07102293,2007.
    [27]南向军,张堃元,金志光.乘波前体两侧高超声速内收缩进气道一体化设计[J].航空学报,2012,33(8):1417-1426.
    [28] Steelant J. Publishable Final Activity Report of Specific Targeted Research Project LAPCAT[R]. AST4-CT-2005-012282.
    [29]吴颍川,贺元元,周正,等.一种背部进气组合动力飞行器一体化气动布局研究[C].哈尔滨:第八届高超声速科技学术会议,2015.
    [30]肖尧,崔凯,李广利,等.背部进气高超声速飞行器概念初探[C].杭州:第十八届全国高超声速气动力热学术交流会议,2016.
    [31] Timothy K,John R O,Virgil H,et al. Aztec:A TSTO Hypersonic Vehicle Concept Utilizing TBCC and HEDM Propulsion Technologies[R]. AIAA 2004-3728.
    [32] Hideyuki T,Hisao F,Kazuo S,et al. Design Study on Hypersonic Engine Components for TBCC Space Planes[R]. AIAA 2003-7006.
    [33]牛文,李文杰. SKYLON飞行器与SABRE发动机研究[J].飞航导弹,2013,(3):70-75.
    [34] Kevin G B,Ajay P K,Christopher T,et al. The Hypersonic Space and Global Transportation System:A Concept for Routine and Affordable Access to Space[R].AIAA 2011-2295.
    [35]向先宏,刘愿,钱战森,等.一种轨道级临近空间高超声速飞行器内外流一体化设计及气动特性评估[C].西安:第九届高超声速科技学术会议,2016.
    [36]向先宏,章隆泰,钱战森.一种高超声速宽适应性内外流双乘波一体化布局设计技术研究[C].杭州:第十八届全国高超声速气动力热学术交流会议,2016.
    [37]杜斌,张浩成,芮姝,等.一种基于新型三组合动力的单级入轨空天飞行器概念研究[C].西安:第九届高超声速科技学术会议,2016.
    [38] Walker S H,Rodgers F. Falcon Hypersonic Technology Overview[R]. AIAA 2005-3253.
    [39] Martin S,Josef K. Preliminary Definition of Supersonic and Hypersonic Airliner Configurations[R]. AIAA 2006-7984.
    [40]袁化成,梁德旺.高超声速进气道再启动特性分析[J].推进技术,2006,27(5):390-393.(YUAN Huacheng,LIANG De-wang. Analysis of Characteristics of Restart Performance for a Hypersonic Inlet[J]. Journal of Propulsion Technology,2006,27(5):390-393.)
    [41] Moses R L,Bouchard K A,Vause R E,et al. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet HighSpeed Propulsion[R]. AIAA 1999-4948.
    [42] Lynn E S,Daric W E,Rich L D,et al. Turbine Based Combination Cycle(TBCC)Propulsion Subsystem Integration[R]. AIAA 2004-3649.
    [43]孙波,张堃元,金志光,等.流线追踪Busemann进气道设计参数的选择[J].推进技术,2007,28(1):55-59.(SUN Bo,ZHANG Kun-yuan,JIN Zhi-guang,et al. Selection of Design Parameters for Streamtraced Hypersonic Busemann Inlets[J]. Journal of Propulsion Technology,2007,28(1):55-59.)
    [44] Murray N,Steelant J. Methodologies Involved in the Design of LAPCAT-MR1:A Hypersonic Cruise Passenger Vehicle[R]. AIAA 2009-7399.
    [45] Curran E T,Murthy N B. Progress in Astronautics and Aeronautics[M]. US:Scramjet Propulsion,2001.
    [46]李建林.临近空间高超声速飞行器发展研究[M].北京:中国宇航出版社,2012.
    [47]罗金玲,徐敏,刘杰.一体化外形的高超声速飞行器升阻特性研究[J].宇航学报,2007,28(6):1478-1481.
    [48]尤延铖,梁德旺,黄国平.一种新型内乘波式进气道初步研究[J].推进技术,2006,27(3):252-256.(YOU Yan-cheng,LIANG De-wang,HUANG Guoping. Investigation of Internal Waverider-Derived Hypersonic Inlet[J]. Journal of Propulsion Technology,2006,27(3):252-256.)
    [49]崔尔杰.近空间飞行器发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [50] Bissinger N C,Blagoveshchensky N A,Gubanov A A,et al. Improvement of Forebody/Inlet Integration for Hypersonic Vehicle[J]. Aerospace Science and Technology,1998,(8):505-514.
    [51]贺旭照,周正,倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术,2012,33(4):510-515.(HE Xu-zhao,ZHOU Zheng,NI Hong-li.Integrated Design Methods and Performance Analyses of Osculating Inward Turning Cone Waverider Forebody Inlet(OICWI)[J]. Journal of Propulsion Technology,2012,33(4):510-515.)
    [52] Jazra T,Preller D,Smart M K. Design of an Airbreathing Second Stage for a Rocket-Scramjet-Rocket Launch Vehicle[J]. Journal of Spacecraft and Rockets,2013,50(2):411-422.
    [53]李文杰,牛文,张洪娜,等. 2013年世界高超声速飞行器发展总结[J].飞航导弹,2014,(2):3-10.
    [54] Xiang X H,Liu Y,Qian Z S. Investigation of a Wide Range Adaptable Hypersonic Dual-Waverider Integrative Design Method Based on Two Different Types of 3D Inward-Turning Inlets[R]. AIAA 2017-2110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700