用户名: 密码: 验证码:
高伯羟基含量聚(碳酸酯-醚)多元醇的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of High Primary Hydroxyl Content Poly(carbonate-ether) Polyol
  • 作者:付双滨 ; 秦玉升 ; 乔立军 ; 王献红 ; 王佛松
  • 英文作者:Shuang-bin Fu;Yu-sheng Qin;Li-jun Qiao;Xian-hong Wang;Fo-song Wang;Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:二氧化碳 ; 二氧化碳基多元醇 ; 封端 ; 伯羟基
  • 英文关键词:Carbon dioxide;;CO2-Polyol;;End-capping;;Primary hydroxyl group
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院长春应用化学研究所生态环境材料高分子重点实验室;中国科学院大学;
  • 出版日期:2019-01-25 16:11
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:中国科学院前沿科学重点研究项目(项目号QYZDJ-SSWJSC017)资助
  • 语种:中文;
  • 页:GFXB201904002
  • 页数:6
  • CN:04
  • ISSN:11-1857/O6
  • 分类号:20-25
摘要
聚(碳酸酯-醚)多元醇又称二氧化碳基多元醇,是通过CO_2与环氧丙烷(PO)的调聚反应所制备的.由于环氧丙烷开环反应时优先在空间位阻较低的亚甲基上的碳-氧键断裂,生成端羟基以仲羟基为主的二氧化碳基多元醇,其伯羟基含量通常低于20%,导致其与异氰酸酯反应的活性较低.本文提出了环氧乙烷(EO)封端、EO和CO_2共聚封端、一锅法三元调聚封端(PO、EO与CO_2)等3种方法来提高二氧化碳基多元醇中的伯羟基含量.研究表明,利用EO封端方法会导致多元醇中碳酸酯含量的降低,而采用EO和CO_2共聚进行封端可合成出伯羟基含量达72%的二氧化碳基多元醇,且碳酸酯含量下降很少.最后我们利用双金属催化剂(DMC)对PO和EO的开环反应速度的差异,采用一锅法将PO、EO和CO_2进行三元调聚反应,合成了伯羟基含量可达62%的二氧化碳基多元醇,且碳酸酯含量几乎不受影响.
        During the past decade, poly(carbonate-ether) polyols, also known as CO_2-polyols, have been synthesized by the copolymerization of CO_2 and propylene oxide(PO) with double metal cyanide(DMC) catalyst in the presence of various chain transfer agents. CO_2-polyols show great potential as substitutes for polyols derived from fossil feedstock in the polyurethane industry. However, the ring opening reaction of PO generally occurs at the methylene carbon-oxygen bond due to less steric hindrance producing CO_2-polyol mainly with the second hydroxyl(2° OH) as terminal group, therefore, the terminal primary hydroxyl(1° OH) content is usually lower than 20%, which leads to their much lower reactivity with isocyanate. Three methods were chosen for increasing the primary hydroxyl content of CO_2-polyols, including ethylene oxide(EO) end-capping,copolymerization end-capping of EO and CO_2, and one-pot ternary polymerization(PO, EO and CO_2) endcapping. The primary hydroxyl content of the polyols was analysed based on the difference in 19 F-NMR chemical shifts between the primary and secondary trifluoroacetyl esters of the polyols. 19 F-NMR and 1 H-NMR spectroscopy indicated that EO end-capping could improve the 1° OH content of CO_2 polyols in some extent,while accompanied with obvious loss of the carbonate unit content. Therefore, the EO end-capping method can only provide polyols with low carbonate unit content. Yet CO_2-polyols with 72% of 1° OH content have been synthesized by copolymerization end-capping of EO and CO_2, and the content of carbonate unit decreases little.Finally, taking advantage of the different reactivity of PO and EO with double metal cyanide catalysts(DMC), we synthesized CO_2-polyols with 62% of 1° OH content by one-pot ternary polymerization of PO, EO and CO_2, and the carbonate unit content was almost unaffected. This strategy provides a safe and efficient possibility to synthesize high 1° OH content CO_2-polyols.
引文
1Ionescu M.Chemistry and Technology of Polyols for Polyurethanes.Shrewsbury:Smithers Rapra Technology Ltd,2005.53-54
    2Delebecq E,Pascault J P,Boutevin B,Ganachaud F.Chem Rev,2013,113:80-118
    3Hu S J,Luo X L,Li Y B.ChemSusChem,2014,7:66-72
    4Mahmood N,Yuan Z,Schmidt J,Xu C.Renew Sust Energ Rev,2016,60:317-329
    5Petrovic Z S.Polym Rev,2008,48:109-155
    6Qin Yusheng(秦玉升),Wang Xianhong(王献红),Wang Fosong(王佛松).Scientia Sinica Chimica(中国科学·化学),2018,8:883-893
    7Hinz W,Dexheimer E M,Bohres E,Grosch G H.US patent,C08g,6762278.2014-07-13
    8Allen S D,Cherian A E,Coates G W,Farmer J J,Gridnev A A,Simoneau C A.US patent,C08g,8247520.2013-01-25
    9Cyriac A,Lee S H,Varghese J K,Park J H,Jeon J Y,Kim S J,Lee B Y.Green Chem,2011,13:3469-3475
    10Gao Y G,Qin Y S,Zhao X J,Wang F S,Wang X H.J Polym Res,2012,19:9878
    11Liu S J,Qin Y S,Chen X S,Wang X H,Wang F S.Polym Chem,2014,5:6171-6179
    12Langanke J,Wolf A,Hofmann J,Boehm K,Subhani M A,Mueller T E,Leitner W,Guertler C.Green Chem,2014,16:1865-1870
    13Liu S J,Miao Y Y,Qiao L J,Qin Y S,Wang X H,Chen X S,Wang F S.Polym Chem,2015,6:7580-7585
    14Liu S J,Qin Y S,Qiao L J,Miao Y Y,Wang X H,Wang F S.Polym Chem,2016,7:146-152
    15Ma K,Bai Q,Zhang L,Liu B Y.RSC Adv,2016,6:48405-48410
    16Pohl M,Danieli E,Leven M,Leitner W,Bluemich B,Mueller T E.Macromolecules,2016,49:8995-9003
    17von der Assen N,Bardow A.Green Chem,2014,16:3272-3280
    18Wang J,Zhang H M,Miao Y Y,Qiao L J,Wang X H,Wang F S.Polymer,2016,100:219-226
    19Wang J,Zhang H M,Miao Y Y,Qiao L J,Wang X H,Wang F S.Green Chem,2016,18:524-530
    20Zhang Yaming(张亚明),Gao Fengxiang(高凤翔),Zhou Qinghai(周庆海),Qin Yusheng(秦玉升),Wang Xianhong(王献红),Wang Fosong(王佛松).Acta Polymerica Sinica(高分子学报),2015,(1):106-112
    21Qin Yusheng(秦玉升),Gu Lin(顾林),Wang Xianhong(王献红).Acta Polymerica Sinica(高分子学报),2013,(5):600-608
    22Hanna J G,Siggia S.J Polym Sci,1962,56:297-304
    23Miyajima T,Nishiyama K,Satake M,Tsuji T.Polym J,2015,47:771-778
    24Fu S B,Qin Y S,Qiao L J,Wang X H,Wang F S.Polymer,2018,153:167-172
    25Li Z F,Qin Y S,Zhao X J,Wang F S,Zhang S B,Wang X H.Eur Polym J,2011,47:2152-2157
    26Gao Y G,Gu L,Qin Y S,Wang X H,Wang F S.J Polym Sci,2012,50:5177-5184
    27Boiko V P,Grishchenko V K.Acta Polymerica,1985,36:459-472
    28Sleevi P,Glass T E,Dorn H C.Anal Chem,1979,51:1931-1934
    29Manatt S L,Lawson D D,Ingham J D,Rapp N S,Hardy J P.Anal Chem,1966,38:1063-1065

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700