石墨烯/环氧树脂多功能复合材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Multifunctional Graphene/Epoxy Nano-Composites
  • 作者:白刚 ; 肖伟 ; 高锋 ; 张剑 ; 罗文波
  • 英文作者:BAI Gang;XIAO Wei;GAO Feng;ZHANG Jian;LUO Wenbo;Beijing Institute of Spacecraft System Engineering;National Center for Nanoscience and Technology;China Academy of Launch Vehicle Technology;
  • 关键词:石墨烯 ; 环氧树脂 ; 复合材料
  • 英文关键词:Graphene;;Epoxy;;Composites
  • 中文刊名:YHCG
  • 英文刊名:Aerospace Materials & Technology
  • 机构:北京空间飞行器总体设计部;国家纳米科学中心;中国运载火箭技术研究院;
  • 出版日期:2019-02-15
  • 出版单位:宇航材料工艺
  • 年:2019
  • 期:v.49;No.281
  • 语种:中文;
  • 页:YHCG201901002
  • 页数:8
  • CN:01
  • ISSN:11-1824/V
  • 分类号:5-12
摘要
主要介绍石墨烯改性环氧树脂复合材料力学、热学、电学性能的研究进展,以及石墨烯在碳纤维/环氧树脂功能型复合材料中的应用,并展望结构-功能一体化石墨烯改性复合材料在航天领域的应用前景。
        A comprehensive review is presented to introduce the latest progress of mechanical,thermal and electrical properties of graphene/functional composites.The future perspectives of graphene/epoxy nanocomposites in aerospace filed were concluded.
引文
[1]马宏林.航空航天用树脂基复合材料[J].宇航材料工艺,1996(2):36-39.
    [2]陈烈民.碳纤维复合材料在卫星上的应用趋势[J].宇航材料工艺,1993,23(4):5-7.
    [3]郭玉明,冯志海,王金明.高性能PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7.6
    [4]THOSTENSON ET,REN Z,CHOUhou T-W.Advances in the science and technology of carbon nanotubes and their composites:a review[J].Composites Science and Technology,2001,61(13):1899-1912.
    [5]ALLEN M J,TUNG V C,KANER R B.Honeycomb carbon:a review of graphene[J].Chemical Reviews,2010,110(1):132-145.
    [6]LEE C,WEI XD,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [7]BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
    [8]KELLY B T.The thermal expansion coefficient of graphite parallel to the basal planes[J].Carbon,1972,10(4):429-433.
    [9]STOLLER M D,PARK S,ZHU Y,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
    [10]KIM H,ABDALA A A,MACOSKO C W.Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.
    [11]JUN Y S,UM J G,JIANG G,et al.Ultra-large sized graphene nano-platelets(GnPs)incorporated polypropylene(PP)/GnPs composites engineered by melt compounding and its thermal,mechanical,and electrical properties[J].Composites Part B:Engineering,2018,133:218-225.
    [12]ZHOU D,CUI Y,XIAO P W,et al.A general and scalable synthesis approach to porous graphene[J].Nature communications,2014(5):4716.
    [13]XU K,FU Y,ZHOU Y,et al.Cationic nitrogen-doped helical nanographenes[J].Angew Chem.Int.Ed.Engl.,2017,56(50):15876-15881.
    [14]CAI J,RUFFIEUX P,JAAFAR R,et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466(7305):470-473.
    [15]RUFFIEUX P,WANG S,YANG B,et al.On-surface synthesis of graphene nanoribbons with zigzag edge topology[J].Nature,2016,531(7595):489-492.
    [16]XU Y,LIU Z,ZHANG X,et al.A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property[J].Advanced Materials,2009,21(12):1275-1279.
    [17]WU Q,SUN Y,BAI H,et al.High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J].Phys.Chem.Chem.Phys.,2011,13(23):11193-11198.
    [18]ZHANG X,FENG Y,TANG S,et al.Preparation of a graphene oxide-phthalocyanine hybrid through strongπ-πinteractions[J].Carbon,2010,48(1):211-216.
    [19]BAI H,XU Y,ZHAO L,et al.Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J].Chem.Commun.(Camb.),2009(13):1667-1669.
    [20]YANG X,ZHANG X,LIU Z,et al.High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J].The Journal of Physical Chemistry C,2008,112(45):17554-17558.
    [21]PATIL A J,VICKERY J L,SCOTT T B,et al.Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J].Advanced Materials,2009,21(31):3159-3164.
    [22]VALLéS C,DRUMMOND C,SAADAOUI H,et al.Solutions of negatively charged graphene sheets and ribbons[J].Journal of the American Chemical Society,2008,130(47):15802-15804.
    [23]CHANG H,WANG G,YANG A,et al.A Transparent,flexible,low-temperature,and solution-processible graphene composite electrode[J].Adv.Funct.Mater.,2010,20(17):2893-2902.
    [24]XU Z,LIU Y,ZHAO X,et al.Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J].Advanced Materials,2016,28(30):6449-6456.
    [25]LI Z,XU Z,LIU Y,et al.Multifunctional non-woven fabrics of interfused graphene fibres[J].Nature Communications,2016(7):13684.
    [26]XU Z,GAO C.Graphene chiral liquid crystals and macroscopic assembled fibres[J].Nature Communications,2011(2):571.
    [27]XIN G,YAO T,SUN H,et al.Highly thermally conductive and mechanically strong graphene fibers[J].Science,2015,349(6252):1083.
    [28]SHAO Y,WANG J,WU H,et al.Graphene based electrochemical sensors and biosensors:a review[J].Electroanalysis,2010,22(10):1027-1036.
    [29]KWAK J,CHU J H,CHOI J K,et al.Near roomtemperature synthesis of transfer-free graphene films[J].Nature Communications,2012(3):645.
    [30]CHEN J,GUO Y,WEN Y,et al.Two-stage metalcatalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J].Advanced Materials,2013,25(7):992-997.
    [31]WANG G,ZHANG M,ZHU Y,et al.Direct growth of graphene film on germanium substrate[J].Sci.Rep.,2013(3):2465.
    [32]NGUYEN S T,NGUYEN T,RINALDI A,et al.Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:352-358.
    [33]DAI G P,WU M H,TAYLOR D K,et al.Hybrid 3Dgraphene and aligned carbon nanofiber array architectures[J].Rsc.Adv.,2012,2(24):8965-8966.
    [34]SHI H,LI Y,GUO T.In situpreparation of transparent polyimide nanocomposite with a small load of graphene oxide[J].J Appl.Polym.Sci.,2013,128(5):3163-3169.
    [35]WANG X,HU Y,SONG L,et al.In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J].Journal of Materials Chemistry,2011,21(12):4222-4227.
    [36]Qin W Z,Vautard F,Drzal L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B-Engineering,2015,69:335-341.
    [37]KIM H,MACOSKO C W.Processing-property relationships of polycarbonate/graphene composites[J].Polymer,2009,50(15):3797-3809.
    [38]WAN Y J,TANG L C,YAN D,et al.Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J].Composites Science and Technology,2013,82:60-68.
    [39]WANG X,XING W,ZHANG P,et al.Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J].Composites Science and Technology,2012,72(6):737-743.
    [40]RAFIEE M A,Rafiee J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].Acs.Nano.,2009,3(12):3884-3890.
    [41]SHADLOU S,AHMADI M B,TAHERI F.The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites[J].Materials&Design,2014,59:439-447.
    [42]BOSE S,DAS A,BASU S,et al.Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite[J].Polym Composite,2018,39(9):3119-3128.
    [43]CHHETRIS,SAMANTA P,MURMU C,et al.Effect of dodecyal amine functionalized graphene on the mechanical and thermal properties of epoxy-based composites[J].Polymer Engineering&Science,2016,56(11):1221-1228.
    [44]WANG X,JIN J,SONG M.An investigation of the mechanism of graphene toughening epoxy[J].Carbon,2013,65:324-333.
    [45]CHANDRASEKARAN S,SATO N,T?LLE F,et al.Fracture toughness and failure mechanism of graphene based epoxy composites[J].Composites Science and Technology,2014,97:90-99.
    [46]BORTZ D R,HERASeras E G,MARTIN G I.Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2011,45(1):238-245.
    [47]CHHETRI S,ADAK N C,SAMANTA P,et al.Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites[J].J Appl.Polym.Sci.,2018,135(15):46114-46124.
    [48]YOUSEFI N,LIN X,ZHENG Q,et al.Simultaneous in situ reduction,self-alignment and covalent bonding in graphene oxide/epoxy composites[J].Carbon,2013,59:406-417.
    [49]POKHAREL P,TRUONG Q T,LEE D S.Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites[J].Composites Part B:Engineering,2014,64:187-193.
    [50]TENG C C,MA C M,LU C H,et al.Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J].Carbon,2011,49(15):5107-5116.
    [51]FUu Y X,HE Z X,MO D C,et al.Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J].International Journal of Thermal Sciences,2014,86:276-283.
    [52]HUANG X,ZHI C,JIANG P.Toward effective7synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J].The Journal of Physical Chemistry C,2012,116(44):23812-23820.
    [53]SHAHIL M,BALANDIN A A.Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J].Nano.Lett.,2012,12(2):861-877.
    [54]HOU Z L,SONG W L,WANG P,et al.Flexible graphene-graphene composites of superior thermal and electrical transport properties[J].ACS Appl.Mater.Interfaces,2014,6(17):15026-15032.
    [55]ZHANG C,LI T,SONG H,et al.Improving the thermal conductivity and mechanical property of epoxy composites by introducing polyhedral oligomeric silsesquioxanegrafted graphene oxide[J].Polym.Composite,2018,39(S3):E1890-E1899.
    [56]WANG S,TAMBRAPARNI M,QIU J,et al.Thermal expansion of graphene composites[J].Macromolecules,2009,42(14):5251-5255.
    [57]JIA J,SUN X,LIN X,et al.Exceptional Electrical conductivity and fracture resistance of 3D Interconnected graphene foam/epoxy composites[J].Acs.Nano.,2014,8(6):5774-5783.
    [58]SHEN M Y,CHANG T Y,HSIEH T H,et al.Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites[J].Journal of Nanomaterials,Article ID 565401,9 pages,2013.https://doi.org/10.1155/2013/565401.NanomaterialsArticle ID 5654019 pages2013.https//doi.org/10.1155/2013/565401.
    [59]MANNOV E,SCHMUTZLER H,CHANDRASEKARAN,et al.Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide[J].Composites Science and Technology,2013,87:36-41.
    [60]YANG X,WANG Z,XU M,et al.Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement:Carbon fiber and graphene nanoplatelet[J].Materials&Design,2013,44:74-80.
    [61]HAWKINS D A,HAQUE A.Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites[J].Procedia Engineering,2014,90:176-181.
    [62]YAVARI F,RAFIEE M A,RAFIEEet al.Dramatic increase in fatigue life in hierarchical graphene composites[J].ACS Appl.Mater.Interfaces,2010,2(10):2738-2743.
    [63]LIU L,XIAO L,ZHANG X,et al.Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene[J].Rsc.Adv.,2015,5(71):57853-57859.
    [64]RAMOS F G,MUNOZ M,GARCíAQ J C,et al.Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites[J].Polym.Composite,2017,39(S4):E2116-E2124.
    [65]ADAK N C,CHHETRI S,KUILA T,et al.Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J].Composites Part B:Engineering,2018,149:22-30.
    [66]QIN W,VAUTARD F,DRZAL L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B:Engineering,2015,69:335-341.
    [67]CHEN J,ZHAO D,JIN X,et al.Modifying glass fibers with graphene oxide:towards high-performance polymer composites[J].Composites Science and Technology,2014,97:41-45.
    [68]HUSSAIN S,YORUCU C,AHMED I,et al.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J].Surface and Coatings Technology,2014,258:458-466.
    [69]JEONG Y G,BAIK D H,JANG J W,et al.Preparation,structure and properties of poly(p-phenylene benzobisoxazole)composite fibers reinforced with graphene[J].Macromolecular Research,2014,22(3):279-286.
    [70]GHIDIUM M,LUKATSKAYA M R,ZHAO M Q,et al.Conductive two-dimensional titanium carbide‘clay’with high volumetric capacitance[J].Nature,2014,516(7529):78-81.
    [71]一种石墨烯改性的碳纤维上浆剂的制备方法及其产品.CN105862428A.
    [72]LIU L,YAN F,LI M,et al.Self-assembly of graphene aerogel on carbon fiber for improvement of interfacial properties with epoxy resin[J].Mater.Lett.,2018,218:44-46.
    [73]ALUKO O,GOWTHAM S,ODEGARD G M.Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite[J].Composites Part B:Engineering,2017,131:82-90.
    [74]YAO X,GAO X,JIANG J,et al.Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J].Composites Part B:Engineering,2018,132:170-177.
    [75]WANG C,LI J,YU J,et al.Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J].Composites Part A:Applied Science and Manufacturing,2017,101:511-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700