基于网络药理学探讨葛根治疗缺血性脑卒中的效应机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Exploring the Pharmacological Mechanism of Puerariae Radix on Cerebral Ischemic Stroke by a Network Pharmacology Approach
  • 作者:张昌林 ; 倪小佳 ; 古江勇 ; 刘博 ; 招远祺 ; 蔡业峰
  • 英文作者:ZHANG Changlin;NI Xiaojia;GU Jiangyong;LIU Bo;ZHAO Yuanqi;CAI Yefeng;The Second Clinical School, Guangzhou University of Chinese Medicine;Guangdong Provincial Academy of Chinese Medical Science & the Translational Medicine Research Team of Cerebrovascular Disease (CVD) with TCM;Encephalopathy Center of Guangdong Provincial Hospital of Chinese Medicine;The Basic Theory of Traditional Chinese Medicine Team,Guangdong Provincial Academy of Chinese Medical Science;Chemical Research and Structural Optimization of Chinese Materia Medica Team,Guangdong Provincial Academy of Chinese Medical Science;
  • 关键词:葛根 ; 缺血性脑卒中 ; 网络药理学 ; 靶点 ; 作用机制
  • 英文关键词:Puerariae radix;;cerebral ischemic stroke;;network pharmacology;;targets;;mechanism
  • 中文刊名:ZYXY
  • 英文刊名:Traditional Chinese Drug Research & Clinical Pharmacology
  • 机构:广州中医药大学第二临床医学院;广东省中医院脑病中心;广东省中医药科学院中医药防治脑血管病转化医学研究团队;广东省中医药科学院中药物质基础研究团队;广东省中医药科学院中药活性物质化学研究与结构优化团队;
  • 出版日期:2019-03-28
  • 出版单位:中药新药与临床药理
  • 年:2019
  • 期:v.30;No.157
  • 基金:国家中医药管理局临床基地科研专项(JDZX2015207);; 广州中医药大学高水平大学建设项目(A1-AFD018171Z11096,A1-AFD018171Z11097);广州中医药大学一流学科建设重点项目(A1-AFD018181A34);; 广东省中医院中医药科学技术研究专项(YN2015BZ05,YN2015MS03);; 广州市科技计划项目(编号:201604020003)
  • 语种:中文;
  • 页:ZYXY201904010
  • 页数:9
  • CN:04
  • ISSN:44-1308/R
  • 分类号:59-67
摘要
目的运用网络药理学方法探究葛根治疗缺血性脑卒中(Cerebral ischemic stroke,CIS)的潜在效应机制。方法利用网络药理学分析平台(BATMAN-TCM)数据库收集葛根化学成分及其靶标基因。通过Gene Cards、Drug Bank、HPO、OMIM、TTD等数据库获取CIS疾病靶标基因。将成分靶标与疾病靶标上传至String数据库,构建中药成分靶标-疾病靶标蛋白互作网络,并计算网络特征值,筛选出关键靶标。借助DAVID分析平台对关键靶标进行基因本体(GO)分析和京都基因和基因组百科全书(KEGG)通路富集分析。结果共获取葛根成分18种,成分作用靶标467个,疾病靶标200个。葛根治疗CIS关键靶标180个,包括胰岛素、白细胞介素6、肿瘤坏死因子、Fos原癌基因、一氧化氮合酶3等基因,主要富集在神经活性配体-受体相互作用、胆碱能突触、谷氨酸能突触、钙信号通路、cAMP信号通路、RAP1信号通路、MAPK信号通路、PI3K-AKT信号通路、cGMP-PKG信号通路等多条信号通路。结论葛根治疗CIS的效应机制多与基因调控、抗炎、抗氧化应激和抗细胞凋亡相关。
        Objective To explore the potential mechanism of Puerariae radix in the treatment of cerebral ischemicstroke using a network pharmacology approach. Methods Network pharmacology analysis platform(BATMAN-TCM)was used to collect the chemical constituents and target genes of Puerariae radix. Then, the Gene Cards, DrugBank,HPO,OMIM and TTD databases were used to obtain the target genes of cerebral ischemic stroke disease.Moreover,the component targets and disease targets were uploaded to String database to construct the interaction network among TCM component targets and disease targets, and we calculated the characteristic value of thisnetwork in order to screen out the key targets. Finally,Gene Ontology(GO) Analysis and Kyoto Encyclopedia ofGenes and Genomes(KEGG) were carried out with the aid of DAVID analysis platform. Results Base on theBATMAN-TCM,a total of 18 components of Puerariae radix were obtained,with 467 predicted targets and 200 disease targets. Based on network eigen values,180 key targets of Puerariae radix treating cerebral ischemic strokewere screened out, including INS, IL-6, TNF, Fos proto-oncogene, NOS3 and other genes. The biologicalpathways mainly involved in the neuroactive ligand receptor interaction, cholinergic synapse, glutaminergicsynapse, calcium signaling pathway, c AMP signaling pathway, RAP1 signaling pathway, MAPK signalingpathway, PI3 K-AKT signal pathway, c GMP-PKG signal pathway and other signal pathways. Conclusion Theresult of this study preliminarily reveals the effective mechanism of Puerariae radix in treating cerebral ischemicstroke,which is related to gene regulation,anti-inflammatory,anti-oxidative stress and anti-apoptosis.
引文
[1] GUAN T,MA J,LI M,et al. Rapid transitions in the epidemiology of stroke and its risk factors in china from 2002 to 2013[J].Neurology, 2017,89(1):53-61.
    [2]尚志钧.神农本草经校注[M].北京:学苑出版社,2008:117.
    [3]张琼珠.基于中风病风痰相关的用药规律研究[D].济南:山东中医药大学,2017.
    [4]陈蕾,毕晓莹,朱立勋,等.葛根总黄酮与丹参酮ⅡA治疗缺血性脑卒中的随机对照临床研究[J].中西医结合学报,2011,9(11):1215-1220.
    [5]纪艾玲,张晓健.葛根素注射液治疗急性脑梗死炎症因子的影响[J].南京中医药大学学报,2009,25(2):145-147.
    [6]王静芳,董晓英.葛根素注射液治疗急性缺血性卒中临床观察[J].实用中医内科杂志,2008,22(9):66-67.
    [7]潘家祜.基于网络药理学的药物研发新模式[J].中国新药与临床杂志,2009,28(10):721-726.
    [8]刘志华,孙晓波.网络药理学:中医药现代化的新机遇[J].药学学报,2012,47(6):696-703.
    [9] LIU Z,GUO F,WANG Y,et al. BATMAN-TCM:a bioinformatics analysis tool for molecular mechanism of traditional chinese medicine[J]. Sci Rep,2016,6:21146.
    [10] PERLMAN L, GOTTLIEB A, ATIAS N, et al. Combining drug and gene similarity measures for drug-target elucidation[J]. J Comput Biol,2011,18(2):133-145.
    [11] SAFRAN M,DALAH I,ALEXANDER J,et al. Gene Cards Version3:the human gene integrator[J/OL]. Database,2010,[2010-08-05].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938269/. doi:10.1093/database/baq020.
    [12] WISHART D S, KNOX C, GUO A C, et al. Drug Bank:a knowledgebase for drugs, drug actions and drug targets[J]. Nucleic Acids Res, 2008,36:901-906.
    [13] ROBINSON P N, K?HLER S, BAUER S, et al. The human phenotype ontology:a tool for annotating and analyzing human hereditary disease.[J]. Am J Hum Genet,2008,83(5):610-615.
    [14] HAMOSH A, SCOTT A F, AMBERGER J S, et al. Online Mendelian Inheritance in Man(OMIM),a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Research,2005,33(1):514-517.
    [15] LI Y H, YU C Y, LI X X, et al. Therapeutic target database update 2018:enriched resource for facilitating bench-to-clinic research of targeted therapeutics[J]. Nucleic Acids Res,2017,46:1121-1127.
    [16] MERING C V,JENSEN L J,SNEL B,et al. STRING:known and predicted protein-protein associations,integrated and transferred across organisms[J]. Nucleic Acids Res,2005,33:433-437.
    [17] SUBUDHI A K, BOOPATHI P A, PANDEY I, et al. Disease specific modules and hub genes for intervention strategies:a coexpression network based approach for plasmodium falciparum,clinical isolates[J]. Infect Genet Evol,2015,35:96-108.
    [18] CONSORTIUM T G O,ASHBURNER M,BALL C A,et al. Gene Ontology:tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29.
    [19] WIXON J,KELL D. The Kyoto encyclopedia of genes and genomesKEGG[J]. Yeast,2000,17(1):48-55.
    [20] DENNIS G, SHERMAN B T, HOSACK D A, et al. DAVID:database for annotation, visualization,and integrated discovery[J].Genome Biol,2003,4(5):R60.1-R60.11.
    [21] HE H, GUO T, ZHANG P, et al. Puerarin provides a neuroprotection against transient cerebral ischemia by attenuating autophagy at the ischemic penumbra in neurons but not in astrocytes[J]. Neurosci Lett,2017,643:45-51.
    [22] ARAS A B,GUVEN M,AKMAN T,et al. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats[J]. Neural Regeneration Research,2015,10(1):146-52.
    [23] MIAO Z Y, XIA X U, CHE L U et al. Genistein attenuates brain damage induced by transient cerebral ischemia through upregulation of Nrf2 expression in ovariectomized rats[J]. Neurol Res,2018,40(8):689-695.
    [24]周文霞,王同兴,程肖蕊,等.网络药理学研究中的网络分析技术[J].国际药学研究杂志,2016,43(5):797-812.
    [25] AGO T, MATSUO R, HATA J, et al. Insulin resistance and clinical outcomes after acute ischemic stroke[J]. Neurology, 2018,90(17):1470-1477.
    [26] BOEHME A K,MCCLURE L A,ZHANG Y,et al. Inflammatory markers and outcomes after lacunar stroke:levels of inflammatory markers in treatment of stroke study[J]. Stroke, 2016, 47(3):659-667.
    [27] BUTLER T L, PENNYPACKER K R. Temporal and regional expression of Fos-related proteins in response to ischemic injury[J].Brain Res Bull,2004,63(1):65-73.
    [28] CHINTHASAGAR B,JANE Z,KATHARINE S,et al. NOS3inhibition confers post-ischemic protection to young and aging white matter integrity by conserving mitochondrial dynamics and miro-2levels[J]. The Journal of Neuroscience,2018,38(28):6247-6266.
    [29]张丽君. WIP1在缺氧脑损伤中的调节作用[D].北京:中国人民解放军军事医学科学院,2016.
    [30] LI P,ANNE R S,LEAK R K,et al. Oxidative stress and DNA damage after cerebral ischemia:Potential therapeutic targets to pre?serve the genome and improve stroke recovery[J]. Neuropharmacolo?gy,2017,134:208-207.
    [31] MILTON M,SMITH P D. It's all about Timing:the involvement of Kir4.1 channel regulation in acute ischemic stroke pathology[J].Front Cell Neurosci,2018,12:36.
    [32] SCH?FER, MICHAEL K E, PFEIFFER, et al. Regulators of mitochondrial Ca2+homeostasis in cerebral ischemia[J]. Cell and Tissue Research,2014,357(2):395-405.
    [33] UNAL-CEVIK I, KILIN?M, CAN A, et al. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia[J]. Stroke,2004,35(9):2189-2194.
    [34] NIKOLETOPOULOU V, MARKAKI M, PALIKARAS K, et al.Crosstalk between apoptosis, necrosis and autophagy[J]. Biochim Biophys Acta,2013,1833(12):3448-3459.
    [35] MARTíN A,DOMERCQ M,MATUTE C. Inflammation in stroke:the role of cholinergic, purinergic and glutamatergic signaling[J].Ther Adv Neurol Disord,2018,11:1-14.
    [36] KITAGAWA K. CREB and cAMP response element-mediated gene expression in the ischemic brain[J]. FEBS J, 2010, 274(13):3210-3217.
    [37] SUN J,NAN G. Erratum to:the mitogen-activated protein kinase(MAPK)signaling pathway as a discovery target in stroke[J]. J Mol Neurosci,2016,59(1):90-98.
    [38] WANG S W,DENG L X,CHEN H Y,et al. MiR-124 affects the apoptosis of brain vascular endothelial cells and ROS production through regulating PI3K/AKT signaling pathway[J]. Eur Rev Med Pharmacol Sci,2018,22(2):498-505.
    [39] FRANCIS S H, BUSCH J L, CORBIN J D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action[J]. Pharmacol Rev,2010,62(3):525-563.
    [40]?LMESTIG JNE, MARLET I R, HAINSWORTH A H, et al.Phosphodiesterase 5 inhibition as a therapeutic target for ischemic stroke:a systematic review of preclinical studies[J]. Cell Signal,2017,38:39-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700