介质材料厚度对一维光子晶体禁带的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Dielectric Material Thickness on the Photonic Band-gap of One-dimensional Photonic Crystal
  • 作者:王正刚 ; 侯国付 ; 赵颖 ; 刘彩池 ; 孙卫忠
  • 英文作者:Wang Zhenggang;Hou Guofu;Zhao Ying;Liu Caichi;Sun Weizhong;Institute of Photoelectronics Thin Film Devices and Technique,Tianjin key Laboratory of Photoelectronics Thin Film Devices and Technique,Key Laboratory of Optoelectronic Information Science and Technology of Ministry of Education,Nankai University;School of Materials Science and Engineering,Hebei University of Technology;
  • 关键词:一维光子晶体 ; 光子禁带 ; 介质层厚度
  • 英文关键词:one-dimension photonic crystal;;photonic band-gap;;dielectric layer thickness
  • 中文刊名:NKDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Nankaiensis
  • 机构:南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;河北工业大学材料科学与工程学院;
  • 出版日期:2013-10-20
  • 出版单位:南开大学学报(自然科学版)
  • 年:2013
  • 期:v.46
  • 基金:国家自然科学基金(61176060);; 天津市自然科学基金重点项目(12JCZDJC28300);; 国家高技术研究发展规划(2011AA050503);; 国家重点基础研究发展计划(2011CBA00705,2011CBA00706,2011CBA00707)
  • 语种:中文;
  • 页:NKDZ201305011
  • 页数:6
  • CN:05
  • ISSN:12-1105/N
  • 分类号:82-87
摘要
由Si和SiO2两种介质材料构成一维二元光子晶体,研究了介质材料各层厚度对光子禁带宽度和禁带位置的影响.为了更加接近实际情况,数值模拟中考虑了Si和SiO2折射率随波长的变化及材料的吸收.研究结果表明,在单周期厚度不变时,随着Si和SiO2两种高低折射率介质厚度比值的增加,光子禁带变窄且禁带中心向长波方向移动;在两种介质厚度比值确定时,随着两种介质厚度同步递增,光子禁带展宽的同时禁带中心向长波方向移动.因此,在介质材料确定的前提下,可通过改变介质材料各层的厚度获得所需要的光子禁带.
        Numerical simulation about the influence of dielectric layer thickness on the photonic band-gap properties of one-dimension photonic crystal(1D-PC),which was made of alternative Si and SiO2 layers,was performed.According to actual properties of Si and SiO2 layers,the variation of refractive index optical absorption was taken in account.Keeping the single period thickness constant,the photonic band-gap became narrow and shifted to long wavelength region with increase of ratio of Si layer thickness to SiO2 thickness.When the ratio of dielectric layer thickness is constant,increasing two dielectric layer thicknesses simultaneously will result in wider photonic band-gap and shifting to long wavelength region.Based on above results,the desirable photonic band-gap can be obtained by changing the dielectric layer thickness for selected dielectric material.
引文
1 Yablonovitch E.Inhibited spontaneous emission in solidstate physics and electronics[J].Physical Review Letters,1987,58(20):2 059-2 062.
    2 John S.Strong localization of photons in certain disordered dielectric superlattices[J].Physical Review Letters,1987,58(23):2 486-2 489.
    3 Fink Y,Winn J N,Fan S,et al.A dielectric omnidirectional reflector[J].Science,1998,282(27):1 679-1 682.
    4 Winn J N,Fink Y,Fan S,et al.Omnidirectional reflection from a one-dimensional photonic crystal[J].Optics Letters,1998,23(20):1 573-1 575.
    5 Tran P.Optical switching with a nonlinear photonic crystal:a numerical study[J].Optics Letters,1996,21(15):1 138-1 140.
    6 Cregan R F,Mangan B J,Knight J C,et al.Single-mode photonic band gap guidance of light in air[J].Science,1999,285(3):1 537-1 539.
    7 Knight J C,Birks T A,Russell P S J,et al.All-silica single-mode optical fiber with photonic crystal cladding[J].Optics Letters,1996,21(19):1 547-1 549.
    8 Scalora M,Bloemer M J,Pethel A S,et al.Transparent,metallo-dielectric,one-dimensional,photonic band-gap structures[J].Journal of Applied Physics,1998,83(5):2 377-2 383.
    9 Chigrin D N,Lavrinenko A V,Yarotsky D A,et al.Observation of total omnidirectional reflection from a one-dimensional dielectric lattice[J].Applied Physics A,1999,68:25-25.
    10 Deopura M,Ullal C K,Temelkuran B,et al.Dielectric omnidirectional visiblereflector[J].Optics Letters,2001,26(15):1 197-1 199.
    11 Springer J,Poruba A,Müllerova L,et al.Absorption loss at nanorough silver back reflector of thin-film silicon solar cells[J].Journal of Applied Physics,2004,95(3):1 427-1 429.
    12 Haug F J,S o¨derstr o¨m T,Cubero O,et al.Plasmonic absorption in textured silver back reflectors of thin film solar cells[J].Journal of Applied Physics,2008,104(6):064 509-1-064 509-7.
    13 Zeng L,Yi Y,Hong C,et al.Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J].Applied Physics Letters,2006,89(11):111 111-(1-3).
    14 Bermel P,Luo C,Zeng L,et al.Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J].Optics Express,2007,15(25):16 986-17 000.
    15 Zhou D,Biswas R.Photonic crystal enhanced light-trapping in thin film solar cells[J].Journal of Applied Physics,2008,103(9):093 102-(1-5).
    16 顾国昌,李宏强,陈洪涛,等.1维光子晶体中的光学传输特性[J].光学学报,2000,20(6):728-734.
    17 陈慰宗,申影,刘军,等.1维光子晶体与光学多层介质膜[J].光子学报,2001,30(9):1 081-1 084.
    18 Universitat de Barcelona.NKDGen software[EB/OL].(2000-02-09)[2012-03-30].http://www.ub.edu/optmat/prod0.html.
    19 Bosch S,Ferré-Borrull J,Sancho P J.A general-purpose software for optical characterization of thin films:special features for microelectronic applications[J].Solid-State Electronics,2001,45:703-709.
    20 张会云,张玉萍,尚廷义,等.含负折射率材料1维3元光子晶体的特性研究[J].光电子·激光,2006,17(5):587-590.
    21 刘广平,宣益民,韩玉阁.1维光子晶体在热光伏技术中的应用[J].光子学报,2008,37(1):115-119.
    22 Wang L,Wang Z S,Tian S,et al.Photonic band gap of one-dimensional periodic structure containing dispersive lefthanded metamaterials[J].Chinese Optics Letters,2008,6(3):198-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700