出炉温度对定向凝固硅锭质量影响的模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation study on influence of temperature on directional solidification of silicon ingot quality
  • 作者:周师晨 ; 孙威 ; 林茂华
  • 英文作者:ZHOU Shi-chen;SUNWei;LINMao-hua;School of materials science and engineering, Nanchang University;Nanchang second middle school;
  • 关键词:定向凝固 ; 出炉温度 ; 模拟 ; 多晶硅
  • 英文关键词:directional solidification;;furnace temperature;;simulation;;polysilicon
  • 中文刊名:COLO
  • 英文刊名:World Nonferrous Metals
  • 机构:南昌大学材料科学与工程学院;南昌市第二中学;
  • 出版日期:2018-08-10 16:43
  • 出版单位:世界有色金属
  • 年:2018
  • 期:No.503
  • 基金:南昌大学创新学分科研训练项目:定向凝固多晶硅锭热应力的有限元分析(14001248)
  • 语种:中文;
  • 页:COLO201811115
  • 页数:3
  • CN:11
  • ISSN:11-2472/TF
  • 分类号:209-211
摘要
多晶硅是当前太阳能电池的主要材料之一,其定向凝固生产中出炉温度的选择直接影响硅锭质量和能耗。本文运用有限元方法对定向凝固多晶硅锭出炉冷却过程进行了模拟仿真。结果发现:多晶硅锭的最佳出炉温度应在600 K到700 K的温度范围。高于该温度范围,硅锭中的位错密度有微小的增大,硅锭质量下降,最大拉应力的峰值在15 MPa以上,硅锭甚至有开裂风险。低于该温度范围,硅锭中的应力和位错密度在出炉冷却过程中基本保持恒定,降低出炉温度只是增加了时间和能量的浪费。
        polycrystalline silicon is one of the main materials of solar cells. The choice of firing temperature in directionally solidified production directly affects the quality and energy consumption of silicon ingot. In this paper, the cooling process of directional solidification polysilicon ingot is simulated by finite element method. It is found that the optimum temperature of the polysilicon ingot should be in the temperature range from 600 K to 700 K. Higher than the temperature range, the dislocation density in the silicon ingot has a slight increase, the quality of the silicon ingot decreases, the peak tensile stress is above 15 MPa, and the silicon ingot even has the risk of cracking. Under the temperature range, the stress and dislocation density in the silicon ingot are basically kept constant during the cooling process, and reducing the temperature of the furnace only increases the waste of time and energy.
引文
[1]刘晶.2017年多晶硅年度市场分析及2018年展望[J].太阳能,2018,285:5-13.
    [2]Wu B,Stoddard N,Ma R,et al.Bulk multicrystalline silicon growth for photovoltaic(PV)application[J].Journal of Crystal Growth,2008,310(7):2178-2184.
    [3]Yeh K M,Hseih C K,Hsu W C,et al.High–quality multi–crystalline silicon growth for solar cells by grain–controlled directional solidification[J].Progress in Photovoltaics:Research and Applications,2010,18(4):265-271.
    [4]Chen X J,Nakano S,Kakimoto K.3D numerical analysis of the influence of material property of a crucible on stress and dislocation in multicrystalline silicon for solar cells[J].Journal of Crystal Growth,2011,318(1):259-264.
    [5]Zhou Naigen,Lin Maohua,Wan Meiqian,Zhou Lang.Lowering Dislocation Density of Directionally Grown Multicrystalline Silicon Ingots for Solar Cells by Simplifying Their PostSolidification Processes-A Simulation Approach.Journal of Thermal Stresses,38,146-155,2015.
    [6]Alexander H,Haasen P.Dislocations and Plastic Flow in the Diamond Structure[J].1969,Volume 22:27-158.
    [7]Maroudas D,Brown R A.On the prediction of dislocation formation in semiconductor crystals grown from the melt:analysis of the haasen model for plastic deformation dynamics[J].Journal of crystal growth,1991,108(1):399-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700