600MW S-CO_2循环燃煤流化床锅炉热量分布及锅炉效率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat Distribution and Boiler Efficiency of 600MW Coal-fired CFB Boiler With S-CO_2 Power Cycle
  • 作者:李平姣 ; 钟文琪 ; 陈晓乐 ; 刘雪娇
  • 英文作者:LI Pingjiao;ZHONG Wenqi;CHEN Xiaole;LIU Xuejiao;State Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education (Southeast University);
  • 关键词:超临界二氧化碳循环 ; 燃煤 ; 循环流化床锅炉 ; 效率
  • 英文关键词:supercritical CO_2 cycle;;firing coal;;circulating fluidized bed(CFB) boiler;;efficiency
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:能源热转换及其过程测控教育部重点实验室(东南大学);
  • 出版日期:2019-03-28 10:33
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.618
  • 基金:国家重点研发计划项目(2017YFB0601802);; 江苏省重点研发计划(BE2017159)~~
  • 语种:中文;
  • 页:ZGDC201907025
  • 页数:14
  • CN:07
  • ISSN:11-2107/TM
  • 分类号:255-268
摘要
提出了600MW超临界二氧化碳(supercritical carbon dioxide,S-CO_2)燃煤发电系统的循环流化床锅炉构型,与传统蒸汽锅炉相比,S-CO_2循环流化床锅炉炉膛内工质受热面份额显著增加,近80%的吸热在炉膛内完成,尾部烟道中布置烟气冷却器,空气预热器的换热面积大幅增大。研究了该特殊构型下床温、过量空气系数、运行负荷以及煤种对炉内热量分布和锅炉效率的影响规律。研究发现,较大的炉膛受热面积占比强化了锅炉效率对床温变化的适应性;过量空气系数为1.1~1.3时,工质焓升分布与受热面布置匹配度最高,达到最佳效率区;运行负荷达到额定负荷的85%~100%时,对应工质流量下工质吸热与受热面尺寸匹配度最高,达到最佳效率区;S-CO_2锅炉效率随负荷、工质流量变化的稳定性高于蒸汽循环流化床锅炉;煤种中热值、灰分、水分及硫分对锅炉效率的影响较为显著。
        This paper proposed the configuration of circulating fluidized bed(CFB) boiler, which belongs to the 600 MW supercritical carbon dioxide(S-CO2) coal-fired power generation system. Compared with conventional steam CFB boilers, the share of heated surface in S-CO_2 CFB boiler's furnace increases remarkably, and nearly 80% heat absorption of working fluid was completed in the furnace. Flue gas cooler was arranged in the tail flue, and heated area of air preheater was greatly increased. This paper analyzed the influences of the following factors on heat distribution and boiler efficiency,including bed temperature, excess air coefficient, operating load and coal type. The study finds that, the high proportion of heated area in the furnace strengthens the adaptability of boiler efficiency to bed temperature. When the excess air coefficient is 1.1~1.3, the optimum efficiency region is reached, and the enthalpy rise distribution of working fluid matches with the heated surface layout best. The load of the optimal efficiency zone is about 85%~100% of the rated load, and the endothermic of corresponding working fluid matches with the heated surface dimension best The stability of S-CO_2 CFB boiler's boiler efficiency is better than that of steam CFB boiler, when operating load and working fluid flow change.Coal's calorific value, ash content, moisture content and sulfur content have significant impact on boiler efficiency.
引文
[1]Tumanovskii A G,Shvarts A L,Somova E V,et al.Review of the coal-fired,over-supercritical and ultra-supercritical steam power plants[J].Thermal Engineering,2017,64(2):83-96.
    [2]赵新宝,鲁金涛,袁勇,等.超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J].中国电机工程学报,2016,36(1):154-162.Zhao Xinbao,Lu Jintao,Yuan Yong,et al.Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants[J].Proceedings of the CSEE,2016,36(1):154-162(in Chinese).
    [3]Sienicki J J,Moisseytsev A,Cho D H,et al.International collaboration on development of the supercritical carbon dioxide Brayton cycle for sodium-cooled fast reactors under the generation IV international forum component design and balance of plant project[C]//Proceedings of International Congress on Advances in Nuclear Power Plants 2010.San Diego,California,USA:The American Nuclear Society,2010:13-17.
    [4]Lee H J,Kim H,Jang C.Compatibility of candidate structural materials in high-temperature S-CO2environment[C]//The 4th International SymposiumSupercritical CO2 Power Cycles.Pittsburgh,Pennsylvania,USA,2014.
    [5]Strakey P A,Dogan O N,Holcomb G R,et al.Technology needs for fossil fuel supercritical CO2 power systems[C]//The 4th International SymposiumSupercritical CO2 Power Cycles.Pittsburgh,Pennsylvania,USA,2014.
    [6]Mecheri M,Le Moullec Y.Supercritical CO2 Brayton cycles for coal-fired power plants[J].Energy,2016,103:758-771.
    [7]Sun Enhui,Xu Jinliang,Li Mingjia,et al.Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J].Energy Conversion and Management,2018,172:138-154.
    [8]Turchi C S.Supercritical CO2 for application in concentrating solar power systems[C]//SCO2 Power Cycle Symposium,Troy,NY,2009.
    [9]Le Moullec Y.Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J].Energy,2013,49:32-46.
    [10]Park S,Kim J,Yoon M,et al.Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J].Applied Thermal Engineering,2018,130:611-623.
    [11]Zhou Jing,Zhang Chenhao,Su Sheng,et al.Exergy analysis of a 1000MW single reheat supercritical CO2Brayton cycle coal-fired power plant[J].Energy Conversion and Management,2018,173:348-358.
    [12]Muto Y,Ishiyama S,Kato Y,et al.Application of supercritical CO2 gas turbine for the fossil fired thermal plant[J].Energy and Power Engineering,2010(9):7-15.
    [13]董力.超临界二氧化碳发电技术概述[J].中国环保产业,2017(5):48-52.Dong Li.Summarization on power technology of supercritical carbon dioxide[J].China Environmental Protection Industry,2017(5):48-52(in Chinese).
    [14]Yang Yu,Bai Wengang,Wang Yueming,et al.Coupled simulation of the combustion and fluid heating of a300MW supercritical CO2 boiler[J].Applied Thermal Engineering,2017,113:259-267.
    [15]Bai Wengang,Zhang Yifan,Yang Yu,et al.300MW boiler design study for coal-fired supercritical CO2 Brayton cycle[J].Applied Thermal Engineering,2018,135:66-73.
    [16]Le Moullec Y.Evaluation of the retrofit of a coal-fired power plant with a supercritical CO2 topping cycle[C]//The 1st International Conference on Supercritical CO2 Power System.Beijing,China,2018.
    [17]Xu Jinliang,Sun Enhui,Li Mingjia,et al.Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J].Energy,2018,157:227-246.
    [18]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,46(2):22-27,41.Chen Yunan,Zhang Yifan,Liu Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,46(2):22-27,41(in Chinese).
    [19]段承杰,杨小勇,王捷.超临界二氧化碳布雷顿循环的参数优化[J].原子能科学技术,2011,45(12):1489-1494.Duan Chengjie,Yang Xiaoyong,Wang Jie.Parameters optimization of supercritical carbon dioxide brayton cycle[J].Atomic Energy Science and Technology,2011,45(12):1489-1494(in Chinese).
    [20]Geng Chenchen,Shao Yingjuan,Zhong Wenqi,et al.Thermodynamic analysis of supercritical CO2 power cycle with fluidized bed coal combustion[J].Journal of Combustion,2018,2018:6963292.
    [21]樊泉桂.超临界锅炉水冷壁工质温度的控制[J].动力工程学报,2006,26(1):38-41,100.Fan Quangui.Control of working medium's temperature within water walls of supercritical boilers[J].Journal of Power Engineering,2006,26(1):38-41,100(in Chinese).
    [22]周星龙.大型循环流化床锅炉分区段传热模型及热力校核计算研究[J].神华科技,2016(1):52-57.Zhou Xinglong.Study on sectionalized heat transfer model and thermal calculation of large-scale circulating fluidized bed boilers[J].Shenhua Science and Technology,2016(1):52-57(in Chinese).
    [23]程乐鸣,许霖杰,夏云飞,等.600MW超临界循环流化床锅炉关键问题研究[J].中国电机工程学报,2015,35(21):5520-5532.Cheng Leming,Xu Linjie,Xia Yunfei,et al.Key issues and solutions in development of the 600MW CFBboiler[J].Proceedings of the CSEE,2015,35(21):5520-5532(in Chinese).
    [24]胡昌华,卢啸风.600MW超临界循环流化床锅炉设备与运行[M].北京:中国电力出版社,2012.Hu Changhua,Lu Xiaofeng.Equipment and operation of600MW supercritical circulating fluidized bed boiler[M].Beijing:China Power Press,2012(in Chinese).
    [25]吕俊复,于龙,张彦军,等.600MW超临界循环流化床锅炉[J].动力工程学报,2007,27(4):497-501,587.Lv Junfu,Yu Long,Zhang Yanjun,et al.A 600MWsupercritical circulating fluidized bed boiler[J].Journal of Power Engineering,2007,27(4):497-501,587(in Chinese).
    [26]Wang Limin,Deng Lei,Tang Chunli,et al.Thermal deformation prediction based on the temperature distribution of the rotor in rotary air-preheater[J].Applied Thermal Engineering,2015,90:478-488.
    [27]朱国桢,徐洋.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004:65-70.Zhu Guozhen,Xu Yang.Design and calculation of circulating fluidized bed boiler[M].Beijing:Tsinghua University Press,2004:65-70(in Chinese).
    [28]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.Sun Xianbin,Huang Zhong.Technology and engineering application of large CFB boiler[M].Beijing:China Power Press,2009(in Chinese).
    [29]Xiao Xianbin,Yang Hairui,Zhang Hai,et al.Research on carbon content in fly ash from circulating fluidized bed boilers[J].Energy&Fuels,2005,19(4):1520-1525.
    [30]艾文虎.降低循环流化床锅炉底渣含碳量措施初探[J].中国科技投资,2013(S1):30.Ai Wenhu.Measures to reduce carbon content in bottom slag of circulating fluidized bed boiler[J].Technology Application,2013(S1):30(in Chinese).
    [31]阎顺林,张斌,刘帅,等.负荷对电站锅炉运行参数影响特性分析及应达值的确定[J].能源工程,2009(6):26-30.Yan Shunlin,Zhang Bin,Liu Shuai,et al.Analysis of the operative intex’s character and must-be Value in power station boiler under different loads[J].Energy Engineering,2009(6):26-30(in Chinese).
    [32]吕俊复,张守玉,刘青,等.循环流化床锅炉的飞灰含碳量问题[J].动力工程学报,2004,24(2):170-174.Lv Junfu,Zhang Shouyu,Liu Qing,et al.Investigation of carbon content in fly ash in circulating fluidized bed boilers[J].Power Engineering,2004,24(2):170-174(in Chinese).
    [33]索疆舜.循环流化床锅炉颗粒浓度二维分布及传热特性的研究[D].太原:太原理工大学,2016.Suo Jiangsun.Study on particle size distribution and heat transfer characteristics of CFB Boilers[D].Taiyuan:Taiyuan University of Technology,2016(in Chinese).
    [34]赵俊杰,罗立权,吴豪,等.过量空气系数对燃煤电站锅炉热效率和脱硝的影响[J].锅炉技术,2015,46(3):30-34,39.Zhao Junjie,Luo Liquan,Wu Hao,et al.Effect of the excess air coefficient on boiler thermal coefficient and denitrification in coal-fired power plants[J].Boiler Technology,2015,46(3):30-34,39(in Chinese).
    [35]毛健雄.超(超)临界循环流化床直流锅炉技术的发展[J].电力建设,2010,31(1):1-6.Mao Jianxiong.Development of supercritical/ultrasupercritical CFB boiler technology[J].Electric Power Construction,2010,31(1):1-6(in Chinese).
    [36]杨世铭,陶文铨.传热学基础[M].2版.北京:高等教育出版社.1991.Yang Shiming,Tao Wenquan.Fundamentals of heat transfer[M].2nd ed.Beijing:Higher Education Press,1991(in Chinese).
    [37]周强泰,周克毅,冷伟,等.锅炉原理[M].3版.北京:中国电力出版社,2013.Zhou Qiangtai,Zhou Keyi,Leng Wei,et al.Boiler principles[M].3rd ed.Beijing:China Power Press,2013(in Chinese).
    [38]刘昀,刘德昌,陈汉平,等.提高循环流化床锅炉热效率的措施[J].热电技术,2008,9(4):3-11.Liu Yun,Liu Dechang,Chen Hanping,et al.Measures for improving the thermal efficiency of circulating fluidized bed boiler[J].Electrical Equipment,2008,9(4):3-11(in Chinese).
    [39]Qi Guoli,Zhang Songsong,Liu Xuemin,et al.Combustion adjustment test of circulating fluidized bed boiler[J].Applied Thermal Engineering,2017,124:1505-1511.
    [40]王芳.循环流化床锅炉掺烧煤矸石炉内数值模拟与燃烧优化[D].广州:华南理工大学,2011.Wang Fang.Numerical simulation and combustion optimization of CFB boilers mixed with coal gangue[D].Guangzhou:South China University of Technology,2011(in Chinese).
    [41]黄治坤.大型循环流化床锅炉燃烧优化研究[D].北京:华北电力大学,2012.Huang Zhikun.Study on combustion optimization of large CFB boiler[D].Beijing:North China Electric Power University,2012(in Chinese).
    [42]Cai Q.Experimental research on the influence of the excess air coefficient on boiler heat loss[M].Wang Yeping,Zhou Shiquan.Advances in Energy,Environment and Materials Science.Singapore:CRC Press,2016.
    [43]吴海姬,张蕾,徐治皋.锅炉运行氧量对锅炉效率影响的定量分析[J].锅炉技术,2009,40(6):17-20.Wu Haiji,Zhang Lei,Xu Zhigao.Quantitative analysis for influence of operation oxygen on boiler efficiency[J].Boiler Technology,2009,40(6):17-20(in Chinese).
    [44]王勤辉,骆仲泱,方梦祥,等.循环流化床锅炉热效率影响因素的试验研究[J].锅炉技术,2001,32(2):19-23,27.Wang Qinhui,Luo Zhongyang,Fang Mengxiang,et al.Experimental investigation of factors affecting the thermal efficiency of circulating fluidized bed boiler[J].Boiler Technology,2001,32(2):19-23,27(in Chinese).
    [45]王芳,田宇,张新宇,等.流速及传热温差对换热器传热系数的影响[J].哈尔滨理工大学学报,2017,22(2):29-33.Wang Fang,Tian Yu,Zhang Xinyu,et al.Influence on heat transfer coefficient of heat exchanger by velocity and heat transfer temperature difference[J].Journal of Harbin University of Science and Technology,2017,22(2):29-33(in Chinese).
    [46]周星龙.600MW循环流化床锅炉炉膛气固流动和受热面传热的研究[D].杭州:浙江大学,2012.Zhou Xinglong.Study on gas-solid flow and heating surfaces heat transfer of 600MW CFB boiler[D].Hangzhou:Zhejiang University,2012(in Chinese).
    [47]Goidich S J,Fan Z,Sippu O,et al.Integration of ultra-supercritical OTU and CFB boiler technologies[C]//19th International Fluidized Bed Combustion Conference.Vienna,Austria,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700