基于磷钼酸和纳米氧化钼的复合空穴传输层材料及其在有机太阳能电池中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PMA:MoO_3 nanocomposite hole transport layer for organic solar cells
  • 作者:王宜玲 ; 伊金垛 ; 骆群 ; 谢中明 ; 李艳青 ; 马昌期 ; 罗立强
  • 英文作者:WANG Yiling;YI Jinduo;LUO Qun;XIE Zhongming;LI Yanqing;MA Changqi;LUO Liqiang;College of Sciences, Shanghai University;Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences;Collaborative Innovation Center of Suzhou Nano Science and Technology, Institute of Functional Nano and Soft Materials, Soochow University;
  • 关键词:有机太阳能电池 ; 空穴传输层 ; 纳米金属氧化物 ; 多金属氧簇 ; 可溶液法加工
  • 英文关键词:organic solar cell;;hole transport layer(HTL);;nano metal oxide;;polyoxometalate(POM);;solution processibility
  • 中文刊名:SDXZ
  • 英文刊名:Journal of Shanghai University(Natural Science Edition)
  • 机构:上海大学理学院;中国科学院苏州纳米技术与纳米仿生研究所印刷电子技术研究中心;苏州大学功能纳米与软物质研究院苏州纳米科技协同创新中心;
  • 出版日期:2018-04-30
  • 出版单位:上海大学学报(自然科学版)
  • 年:2018
  • 期:v.24;No.140
  • 基金:国家自然科学基金资助项目(61306073,61571278);; 江苏省自然科学基金资助项目(BK20130346);; 中国科学院战略重点研究资助项目(XDA09020201)
  • 语种:中文;
  • 页:SDXZ201802009
  • 页数:11
  • CN:02
  • ISSN:31-1718/N
  • 分类号:79-89
摘要
围绕着开发可溶液法加工非聚(3,4-乙烯二氧噻吩单体):聚苯乙烯磺酸钠(poly(3,4-ethylendioxythiophene):poly(sodium-p-styrenesulfonate),PEDOT:PSS)电极界面修饰材料的核心目的,研究了基于磷钼酸(phosphomolybdic acid,PMA)和纳米氧化钼(Mo O3)复合物的新型空穴传输材料.通过将PMA溶液和Mo O3纳米粒子溶液进行混合,制备了复合墨水(PMA:Mo O3).该复合墨水在有机活性层表面具有很好的浸润性和成膜性.利用PMA:Mo O3复合空穴传输层(hole transport layer,HTL)制备的倒置P3HT:PC61BM光伏器件的开路电压和填充因子(fill factor,FF)均比基于单一PMA或Mo O3制备的器件有所提升.进一步优化了PMA:Mo O3复合墨水中两个组分间的比例,发现当复合墨水中Mo O3的含量为66%时,器件性能达到最优,其光电转换效率(power conversion efficiency,PCE)为3.71%.成功验证了利用金属氧化物与多金属氧簇(polyoxometalate,POM)复合物作为电极界面缓冲层制备有机太阳能电池的可行性,为开发新型电极界面修饰材料提供了一个新的研究思路.
        To develop PEDOT:PSS(poly(3,4-ethylendioxythiophene):poly(sodium-pstyrenesulfonate)—hole transporting materials in polymer solar cells, a solution-processable nanocomposite ink based on MoO_3 nano-particles and phosphomolybdic acid(PMA) is reported. The PMA:MoO_3 composite ink can be easily prepared by simply mixing PMA and MoO_3 solutions in different weight ratios. This PMA:MoO_3 composite ink shows good wettability on polymer surface. A smooth and homogeneous thin film can be easily deposited on polymer surface via a spin-coating process without any surface treatment.Both open circuit voltage(VOC) and fill factor(FF) of the PMA:MoO_3-based P3 HT:PC61 BM cells are higher than that based on PMA or MoO_3 cells. Influence of the blend ratio between PMA and MoO_3 on solar cell performance was carried out, and the optimized best blend ratio was found to be 1∶2 for PMA:MoO_3, with which a highest device performance of 3.71% was achieved. The current work demonstrates that nanocomposite of metal oxide and polyoxometalate(POM) can serve as an excellent electrode buffer layer for solutionprocessed organic electronics.
引文
[1]Nielsen T D,Cruickshank C,Foged S,et al.Business,market and intellectual property analysis of polymer solar cells[J].Solar Energy Materials and Solar Cells,2010,94(10):1553-1571.
    [2]Lu L,Zheng T,Wu Q,et al.Recent advances in bulk heterojunction polymer solar cells[J].Chemical Reviews,2015,115(23):12666-12731.
    [3]唐健敏,史伟民,王林军,等.Cu Pc/Cu Pc:C60/Alq/Al结构的有机太阳能电池[J].上海大学学报(自然科学版),2010,16(1):38-42.
    [4]Zhao J,Li Y,Yang G,et al.Efficient organic solar cells processed from hydrocarbon solvents[J].Nature Energy,2016,1(2):15027.
    [5]Zhang F,Xu X,Tang W,et al.Recent development of the inverted configuration organic solar cells[J].Solar Energy Materials and Solar Cells,2011,95(7):1785-1799.
    [6]Hau S K,Yip H L,Baek N S,et al.Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer[J].Applied Physics Letters,2008,92(25):253301.
    [7]Hau S K,Yip H L,Jen A K Y.A review on the development of the inverted polymer solar cell architecture[J].Polymer Reviews,2010,50(4):474-510.
    [8]Duan C,Zhang K,Zhong C,et al.Recent advances in water/alcohol-soluble pi-conjugated materials:new materials and growing applications in solar cells[J].Chemical Society Reviews,2013,42(23):9071-9104.
    [9]Lu H,Lin J,Wu N,et al.Inkjet printed silver nanowire network as top electrode for semitransparent organic photovoltaic devices[J].Applied Physics Letters,2015,106(9):093302.
    [10]Lim F J,Ananthanarayanan K,Luther J,et al.Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells[J].Journal of Materials Chemistry,2012,22(48):25057-25064.
    [11]Meng Y,Hu Z,Ai N,et al.Improving the stability of bulk heterojunction solar cells by incorporating p H-neutral PEDOT:PSS as the hole transport layer[J].ACS Applied Materials Interfaces,2014,6(7):5122-5129.
    [12]Kim J Y,Lee K,Coates N E,et al.Efficient tandem polymer solar cells fabricated by allsolution processing[J].Science,2007,317(5835):222-225.
    [13]Li S S,Tu K H,Lin C C,et al.Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J].ACS Nano,2010,4(6):3169-3174.
    [14]Manders J R,Tsang S W,Hartel M J,et al.Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells[J].Advanced Functional Materials,2013,23(23):2993-3001.
    [15]Xie F,Choy W C H,Wang C,et al.Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole transport layer in organic electronics[J].Advanced Materials,2013,25(14):2051-2055.
    [16]叶森云,刘志伟,卞祖强,等.有机无机杂化太阳能电池中常见无机缓冲材料的研究进展[J].化学学报,2015,73(3):193-201.
    [17]Cheng F,Fang G,Fan X,et al.Enhancing the short-circuit current and efficiency of organic solar cells using Mo O3 and Cu Pc as buffer layers[J].Solar Energy Materials and Solar Cells,2011,95(10):2914-2919.
    [18]Li G,Chu C W,Shrotriya V,et al.Efficient inverted polymer solar cells[J].Applied Physics Letters,2006,88(25):253503.
    [19]Tan Z A,Li L,Cui C,et al.Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells[J].The Journal of Physical Chemistry C,2012,116(35):18626-18632.
    [20]Irfan I,James T A,Bao Z,et al.Work function recovery of air exposed molybdenum oxide thin films[J].Applied Physics Letters,2012,101(9):093305.
    [21]Hammond S R,Meyer J,Widjonarko N E,et al.Low-temperature,solution-processed molybdenum oxide hole-collection layer for organic photovoltaics[J].Journal of Materials Chemistry,2012,22(7):3249-3254.
    [22]Murase S,Yang Y.Solution processed Mo O3 interfacial layer for organic photovoltaics prepared by a facile synthesis method[J].Advanced Materials,2012,24(18):2459-2462.
    [23]Jasieniak J J,Seifter J,Jo J,et al.A solution-processed Mo Ox anode interlayer for use within organic photovoltaic devices[J].Advanced Functional Materials,2012,22(12):2594-2605.
    [24]Xie F,Choy W C,Wang C,et al.Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics[J].Advanced Materials,2013,25(14):2051-2055.
    [25]Lee Y J,Yi J,Gao G F,et al.Low-temperature solution-processed molybdenum oxide nanoparticle hole transport layers for organic photovoltaic devices[J].Advanced Energy Materials,2012,2(10):1193-1197.
    [26]Wong K H,Ananthanarayanan K,Luther J,et al.Origin of hole selectivity and the role of defects in low-temperature solution-processed molybdenum oxide interfacial layer for organic solar cells[J].The Journal of Physical Chemistry C,2012,116(31):16346-16351.
    [27]Bi L H,Kortz U,Dickman M H,et al.Trilacunary heteropolytungstates functionalized by organometallic ruthenium(Ⅱ),[(Ru C6H6)2XW9O34]6-(X=Si,Ge)[J].Inorganic Chemistry,2005,44(21):7485-7493.
    [28]Zhu Y,Yuan Z,Cui W,et al.A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells[J].Journal of Materials Chemistry A,2014,2(5):1436-1442.
    [29]Vasilopoulou M,Douvas A M,Palilis L C,et al.Old metal oxide clusters in new applications:spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics[J].Journal of the American Chemical Society,2015,137(21):6844-6856.
    [30]Alaaeddine M,Zhu Q,Fichou D,et al.Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell[J].Inorganic Chemistry Frontiers,2014,1(9):682-688.
    [31]向怡弦,董晓雯,潘庆谊,等.新方法制备三氧化钼-聚苯胺插层复合物[J].上海大学学报(自然科学版),2009,15(4):417-420.
    [32]Chen L,Wang P,Li F,et al.Efficient bulk heterojunction polymer solar cells using PEDOT/PSS doped with solution-processed Mo O3 as anode buffer layer[J].Solar Energy Materials and Solar Cells,2012,102:66-70.
    [33]Wang Y,Luo Q,Wu N,et al.Solution-processed Mo O3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells[J].ACS Applied Materials and Interfaces,2015,7(13):7170-7179.
    [34]武娜,骆群,吴振武,等.电极界面缓冲层对P3HT:PC61BM太阳能电池热稳定性的影响[J].物理化学学报,2015,31(7):1413-1420.
    [35]Shao S,Liu J,Bergqvist J,et al.In situ formation of Mo O3 in PEDOT:PSS matrix:a facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells[J].Advanced Energy Materials,2013,3(3):349-355.
    [36]Liu J,Shao S,Fang G,et al.High-efficiency inverted polymer solar cells with transparent and work-function tunable Mo O(3)-Al composite film as cathode buffer layer[J].Advanced Materials,2012,24(20):2774-2779.
    [37]Ma H,Yip H L,Huang F,et al.Interface engineering for organic electronics[J].Advanced Functional Materials,2010,20(9):1371-1388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700