建筑相变蓄热及夜间通风技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of phase change heat storage and night ventilation technology of buildings
  • 作者:杨柳 ; 乔宇豪 ; 刘衍 ; 侯立强 ; 王梦媛 ; 刘加平
  • 英文作者:Liu Yang;Yuhao Qiao;Yan Liu;Liqiang Hou;Mengyuan Wang;Jiaping Liu;College of Architecture, Xi'an University of Architecture and Technology;State Key Laboratory of Green Building in Western China;
  • 关键词:建筑节能 ; 建筑热工 ; 相变蓄热 ; 夜间通风 ; 复合降温技术
  • 英文关键词:energy saving;;building thermal engineering;;phase change heat storage;;night ventilation;;compound cooling technology
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:西安建筑科技大学建筑学院;省部共建西部绿色建筑国家重点实验室;
  • 出版日期:2018-03-10
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家杰出青年科学基金(51325803);; 陕西省自然科学基础研究计划(2017JQ5005);; 西部绿色建筑国家重点实验室(培育基地)开放研究基金(LSKF201704)资助
  • 语种:中文;
  • 页:KXTB201807005
  • 页数:12
  • CN:07
  • ISSN:11-1784/N
  • 分类号:36-47
摘要
被动式建筑节能策略通过提升建筑物自身性能及充分利用自然能源来营造舒适的室内热环境,是实现建筑可持续发展的有力途径.相变蓄热技术及夜间通风技术是被动式建筑节能的有效措施,两者有机结合的复合降温技术更能显著改善夏季建筑物室内热环境,降低空调制冷能耗.该技术在利用相变蓄热大幅提升建筑物热稳定性的同时,充分利用了夜间通风携带的自然冷量资源,达到了节能和舒适性并举.通过对相变蓄热、夜间通风以及其二者复合降温技术主要研究领域文献的深入调研,从技术原理、实验研究、节能降温效果等方面对该技术的研究现状进行了分析,综述了相变蓄热及夜间通风技术的研究进展.分析表明,合理应用相变蓄热结合夜间通风复合降温技术可以获得舒适的夏季室内热环境,有效节约空调制冷能耗.通过综合分析该复合降温技术各构成要素之间的相互影响关系,指出该技术应用方式多样,需要综合考虑到气候条件、相变蓄热使用方式以及夜间通风策略等诸多因素.最后,对该技术的复合降温机理及热工设计策略的进一步研究做出了展望.
        Building energy consumption is an important part of total energy consumption in societies; conservation of building operation energy is vital for sustainable development. The use of air conditioning systems to maintain a comfortable summer indoor thermal environment is a common practice in modern buildings, which consumes a large amount of nonrenewable energy and is detrimental to energy efficiency and human health. A passive building energy efficiency strategy is used to enhance the building's own performance and make complete use of natural energy to create a comfortable indoor thermal environment. Building passive energy conservation strategy is a powerful way to achieve sustainable development, promote economic development, and facilitate environmental protection. Phase change heat storage technology and night ventilation technology are efficient energy saving measures utilized in passive buildings. Phase change heat storage regulates the indoor heat distribution effectively through the phase change period to reduce the peak temperature and increase the lowest temperature in the indoor environment. Furthermore, ventilation during summer nights carries a lot of natural cooling and directly reduces the temperature of the indoor environment. The composite technology that integrates phase change thermal storage and night ventilation can significantly improve the summer indoor environment and reduce cooling energy consumption. The phase change material can absorb extra heat during daytime when indoor environment is hot and release it at night. Simultaneously, night ventilation can remove the heat released by the phase change material and provide cooling capacity to materials, thereby promoting the phase change process. Therefore, this composite technology can reduce the indoor temperature throughout the day. Moreover, the technology uses phase change heat storage to enhance the thermal stability of buildings and to solve the mismatch problem pertaining to the short-term supply of natural cooling resources and whole-day cooling demand of buildings. Alternatively, the technology utilizes night ventilation to fully acquire the natural cooling resources. In this paper, research progress of phase change heat storage and night ventilation cooling technology is reviewed based on the survey of the main field research on phase change heat storage, night ventilation, and composite cooling technology. This paper analyzes the components of the composite cooling technology from the aspects of technical principles, experimental research, energy savings, and cooling effects. The analysis shows that reasonable application of the composite cooling technology can obtain comfortable indoor environments and reduce cooling energy consumption during summer. This paper analyzes the mutual influence relationship between the constituent elements of the composite cooling technology. The technology is affected by various conditions, including climatic conditions, phase change heat storage models, ventilation strategies, etc. Furthermore, there is an urgency to perfect the thermal design standard of these technologies. Finally, the paper presents the prospects for further investigating the composite cooling mechanism and optimizing the thermal design strategy, and indicates the need for further in-depth research in the coupling mechanism of the technology and thermal design methods. This paper could help architects, engineers, and researchers understand these building passive energy saving technologies.
引文
1 Yang L,Yang J J,Song B,et al.Fundamental research and practice of passive and ultra-low energy consumption buildings(in Chinese).Chin Sci Bull,2015,18:1698-1710[杨柳,杨晶晶,宋冰,等.被动式超低能耗建筑设计基础与应用.科学通报,2015,18:1698-1710]
    2 Yang L.Climatic Analysis and Architectural Design Strategies for Bio-Climatic Design(in Chinese).Doctor Dissertation.Xi’an:Xi’an University of Architecture and Technology,2003[杨柳.建筑气候分析与设计策略研究.博士学位论文.西安:西安建筑科技大学,2003]
    3 Kuznik F,David D,Johannes K,et al.A review on phase change materials integrated in building walls.Renew Sust Energy Rev,2011,15:379-391
    4 Souayfane F,Fardoun F,Biwole P H.Phase change materials(PCM)for cooling applications in buildings:A review.Energy Buildings,2016,129:396-431
    5 Zhu X R,Yang L,Liu J P.Review of building night ventilation cooling research(in Chinese).Heat Ventilat Air Condition,2010,40:111-116[朱新荣,杨柳,刘加平.建筑夜间通风降温研究进展.暖通空调,2010,40:111-116]
    6 Zhang Y P,Zhou G B,Lin K P,et al.Application of latent heat thermal energy storage in buildings:State-of-the-art and outlook.Build Environ,2007,42:2197-2209
    7 Kuznik F,Virgone J.Experimental assessment of a phase change material for wall building use.Appl Energy,2009,86:2038-2046
    8 Kuznik F,Virgone J,Roux J J.Energetic efficiency of room wall containing PCM wallboard:A full-scale experimental investigation.Energy Buildings,2008,40:148-156
    9 Zhou D,Zhao C Y,Tian Y.Review on thermal energy storage with phase change materials(PCMs)in building applications.Appl Energy,2012,92:593-605
    10 Akeiber H,Nejat P,Majid M Z A,et al.A review on phase change material(PCM)for sustainable passive cooling in building envelopes.Renew Sust Energy Rev,2016,60:1470-1497
    11 Zhang X S,Xia Y,Jin X.Review on phase change material building walls(in Chinese).J Southeast Univ(Nat Sci),2015,45:612-618[张小松,夏燚,金星.相变蓄能建筑墙体研究进展.东南大学学报(自然科学版),2015,45:612-618]
    12 Feldman D,Banu D,Hawes D,et al.Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard.Sol Energy Mater,1991,22:231-242
    13 Shi X,Memon S A,Tang W,et al.Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels.Energy Buildings,2014,71:80-87
    14 Cui H Z,Tang W,Qin Q,et al.Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball.Appl Energy,2017,185:107-118
    15 Schossig P,Henning H M,Gschwander S,et al.Micro-encapsulated phase-change materials integrated into construction materials.Sol Energy Mat Sol C,2005,89:297-306
    16 Lin K P,Zhang Y P,Xu X,et al.Experimental study of under-floor electric heating system with shape-stabilized PCM plates.Energy Buildings,2005,37:215-220
    17 Xie J C,Li Y,Wang W L,et al.Comments on thermal physical properties testing methods of phase change materials.Adv Mech Eng,2013:1255-1260
    18 Lachheb M,Karkri M,Albouchi F,et al.Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method.Energy Convers Manage,2014,82:229-237
    19 Ye R D,Lin W Z,Yuan K J,et al.Experimental and numerical investigations on the thermal performance of building plane containing Ca Cl2·6H2O/expanded graphite composite phase change material.Appl Energy,2017,193:325-335
    20 Hussain S I,Dinesh R,Roseline A A,et al.Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications.Energy Build,2017,143:17-24
    21 Sun X Q,Zhang Q,Medina M A,et al.Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid-liquid phase change materials(PCMs).Appl Energy,2016,162:1453-1461
    22 Soares N,Gaspar A R,Santos P,et al.Experimental evaluation of the heat transfer through small PCM-based thermal energy storage units for building applications.Energy Buildings,2016,116:18-34
    23 Bontemps A,Ahmad M,Johannès K,et al.Experimental and modelling study of twin cells with latent heat storage walls.Energy Buildings,2011,43:2456-2461
    24 Jin X,Medina M A,Zhang X S.On the importance of the location of PCMs in building walls for enhanced thermal performance.Appl Energy,2013,106:72-78
    25 Jin X,Zhang S L,Xu X,et al.Effects of PCM state on its phase change performance and the thermal performance of building walls.Build Environ,2014,81:334-339
    26 Lee K O,Medina M A,Raith E,et al.Assessing the integration of a thin phase change material(PCM)layer in a residential building wall for heat transfer reduction and management.Appl Energy,2015,137:699-706
    27 Ahmad M,Bontemps A,Sallée H,et al.Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material.Energy Buildings,2006,38:673-681
    28 Chen C,Guo H F,Zhou W.Experimental research of the composite phase change material in greenhouse(in Chinese).Acta Energy Solaris Sin,2009,30:287-293[陈超,果海凤,周玮.相变墙体材料在温室大棚中的实验研究.太阳能学报,2009,30:287-293]
    29 Long L S,Ye H,Gao Y F,et al.Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings.Appl Energy,2014,136:89-97
    30 Akeiber H J,Hosseini S E,Wahid M A,et al.Thermal performance and economic evaluation of a newly developed phase change material for effective building encapsulation.Energy Convers Manage,2017,150:48-61
    31 Barzin R,Chen J J J,Young B R,et al.Application of PCM energy storage in combination with night ventilation for space cooling.Appl Energy,2015,158:412-421
    32 Givoni B M.Climate and Architecture.2nd ed.London:Applied Science Publishers,1976
    33 Artmann N,Manz H,Heiselberg P.Climatic potential for passive cooling of buildings by night-time ventilation in Europe.Appl Energy,2007,84:187-201
    34 Qi X L,Yang L,Liu J P.The applicability of night ventilation on office building in north china(in Chinese).Acta Energy Solar Sin,2011,32:669-673[亓晓琳,杨柳,刘加平.北方地区办公建筑夜间通风适用性分析.太阳能学报,2011,32:669-673]
    35 Qi X L.Study on the Thermal Design for Night Ventilation Building(in Chinese).Dissertation for Doctor Degree.Xi’an:Xi’an University of Architecture and Technology,2009[亓晓琳.北方办公建筑夜间通风降温潜力及适用性研究.博士学位论文.西安:西安建筑科技大学,2009]
    36 Artmann N,Jensen R L,Manz H,et al.Experimental investigation of heat transfer during night-time ventilation.Energy Buildings,2010,42:366-374
    37 Dréau J L,Heiselberg P,Jensen R L.Experimental investigation of convective heat transfer during night cooling with different ventilation systems and surface emissivities.Energy Build,2013,61:308-317
    38 Yang L,Li Y G.Cooling load reduction by using thermal mass and night ventilation.Energy Build,2008,40:2052-2058
    39 Zhu X R,Bai L J,Yang L,et al.Experimental study of thermal mass and night ventilation in office building(in Chinese).Acta Energy Solaris Sin,2015,36:1337-1343[朱新荣,白鲁建,杨柳,等.办公建筑蓄热和夜间通风的实验研究.太阳能学报,2015,36:1337-1343]
    40 Zhu X R,Yang W,Yang L,et al.Optimization on critical design parameter of night ventilation buildings(in Chinese).J Xi’an Univ Archit Tech(Nat Sci),2016,48:401-405[朱新荣,杨雯,杨柳,等.夜间通风建筑关键设计参数优化分析.西安建筑科技大学学报(自然科学版),2016,48:401-405]
    41 Liu J P,Zhu X R,Yang L.Simplified calculation method for building nigh ventilation(in Chinese).PRC Patent,CN 102024080 B,2012-03-14[刘加平,朱新荣,杨柳.建筑物夜间通风降温设计的简化计算方法.中国专利,CN 102024080 B,2012-03-14]
    42 Xie J C,Wang W L,Liu J P,et al.Thermal performance analysis of PCM components heat storage using mechanical ventilation:Experimental results.Energy Build,2016,123:169-178
    43 Zalba B,Mar??N J M,Cabeza L F,et al.Free-cooling of buildings with phase change materials.Int J Refrig,2004,27:839-849
    44 Perino M,Dermardiros V,Chen Y,et al.Modelling of an active PCM thermal energy storage for control applications.Energy Proced,2015,78:1690-1695
    45 Zhang L,Yang L,Zhang P.Experimental research on the regenerative night ventilation performance of university dormitory(in Chinese).J Xi’an Univ Archit Tech(Nat Sci),2014,46:749-753[张磊,杨柳,张璞.高校宿舍楼夜间蓄热通风性能实验研究.西安建筑科技大学学报(自然科学版),2014,46:749-753]
    46 Zhang P.Suitability of phase change materials for night ventilation cooling technique(in Chinese).Master Dissertation.Xi’an:Xi’an University of Architecture and Technology,2013[张璞.夜间通风相变储能材料的适宜性研究.硕士学位论文.西安:西安建筑科技大学,2013]
    47 Li B Z,Zhuang C L,Deng A Z,et al.Improvement of indoor thermal environment in light weight building combining phase change material wall and night ventilation(in Chinese).J Civil Archit Environ Eng,2009,31:109-113[李百战,庄春龙,邓安仲,等.相变墙体与夜间通风改善轻质建筑室内热环境.土木建筑与环境工程,2009,31:109-113]
    48 Feng G H,Han S Y,Liu X,et al.Experimental study on night ventilation effect in a phase change wall room in summer(in Chinese).JShenyang Jianzhu Univ(Nat Sci),2013,29:693-697[冯国会,韩淑伊,刘馨,等.相变墙房间夏季夜间通风效果实验.沈阳建筑大学学报(自然科学版),2013,29:693-697]
    49 Kang Y B,Jiang Y,Zhang Y P.Modeling and experimental study on an innovative passive cooling system-NVP system.Energy Build,2003,35:417-425
    50 Stritih U,Butala V.Experimental investigation of energy saving in buildings with PCM cold storage.Int J Refrig,2010,33:1676-1683
    51 Lopez J P A,Kuznik F,Baillis D,et al.Numerical modeling and experimental validation of a PCM to air heat exchanger.Energy Build,2013,64:415-422
    52 Kuznik F,Lopez J P A,Baillis D,et al.Design of a PCM to air heat exchanger using dimensionless analysis:Application to electricity peak shaving in buildings.Energy Build,2015,106:65-73
    53 Xiang Y,Zhou G B.Thermal performance of a window-based cooling unit using phase change materials combined with night ventilation.Energy Build,2015,108:267-278
    54 Mi X,Liu R,Cui H,et al.Energy and economic analysis of building integrated with PCM in different cities of China.Appl Energy,2016,175:324-336
    55 Liu Y,Liu J,Yang L,et al.Energy analysis of phase change wall integrated with night ventilation in Western China.In:Proceedings of 15th International Building Simulation Conference(Building Simulation 2017).San Francisco:International Building Simulation Conference,2017
    56 Liu J,Liu Y,Yang L,et al.Annual energy saving potential for integrated application of phase change envelopes and HVAC in Western China.Energy Proc,2017,205:2470-2477
    57 Ministry of Housing and Urban-Rural Development of the People’s Republic of China.GB50176-2016 Thermal Design Code for Civil building(in Chinese).Beijing:China Architecture and Building Press,2016[中华人民共和国住房和城乡建设部.GB50176-2016民用建筑热工设计规范.北京:中国建筑工业出版社,2016]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700